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Cellular behavior is determined not by a single molecule but by many molecules that interact strongly with
one another and form a complex network. It is unclear whether cellular behavior can be controlled by
regulating certain molecular components in the network. By analyzing a variety of biomolecular regulatory
networks, we discovered that only a small fraction of the network components need to be regulated to govern
the network dynamics and control cellular behavior. We defined a minimal set of network components that
must be regulated to make the cell reach a desired stable state as the control kernel and developed a general
algorithm for identifying it. We found that the size of the control kernel was related to both the topological
and logical characteristics of a network. Intriguingly, the control kernel of the human signaling network
included many drug targets and chemical-binding interactions, suggesting therapeutic application of the
control kernel.

T
he behavior of a cellular system is an emergent outcome of complicated interactions of molecules that work
together in a highly organized manner, forming a biomolecular regulatory network in which molecules are
represented by nodes and the interactions between molecules are denoted by links (an inhibiting link or an

activating link, depending on the regulation type)1–3. As a result, cellular behavior can be defined dynamically only
by the network state that represents all the molecular states in the network collectively. The cellular behavior or
phenotype can be considered a high-dimensional attractor of the biomolecular regulatory network, in which an
attractor is a mathematical concept that represents a stable steady state adopted by a dynamic system, which in
this case is a biomolecular regulatory network4–6. Based on the concept of an attractor, a biomolecular regulatory
network is mapped onto an attractor landscape, where each point in the landscape represents one state of the
network, defined by a set of state values that contain the activity states of all the molecules in the network4.
Although an attractor landscape of a biomolecular regulatory network is composed of various attractors, cellular
behavior mainly reaches a dominant stable state known as the primary attractor7–8. The area around an attractor is
called the basin of attraction and is the region of states that lead to trajectories that converge to the attractor4,6. The
question then arises as to whether the cellular behavior can be controlled with minimal effort such that a desired
cellular state is reached regardless of the initial state. In terms of the attractor landscape, this control corresponds
to identification of a minimal set of nodes such that the regulation (or pinning) of these nodes guarantees the
convergence of the network state to the desired attractor, with the basin of attraction equivalent to the whole state
space.

Several studies have investigated control of complex networks, with the focus on the structural controllability
needed to drive a network from any initial state to any desired final state on the basis of the network structure
without considering the inherent nonlinear dynamics and detailed interaction types, such as activatory or
inhibitory regulation9–11. Liu et al.9 reported that there is a set of driver nodes that can offer full control over
the network based on nodal dynamics (i.e., perturbing the nodes). They also found that the driver nodes tend to
avoid hubs and that the total number of driver nodes depends on the degree (the number of links connected to the
node) distribution. However, Nepusz et al.10 reported contrasting results with respect to both the structural
characteristics and the number of driver nodes based on edge dynamics (i.e., perturbing the interactions between
the nodes, called the switchboard dynamics (SBD)). These structure-based controllability studies have limitations
when applied to biomolecular regulatory networks because they assumed linear dynamics and time-varying
control of nodes, which are unrealistic and unfeasible, if not impossible, for biomolecular regulatory networks.
Moreover, the different regulation types between molecules, such as activation or inhibition, have not been
addressed in the framework of these previous studies.

In the present study, we investigated whether cellular behavior could be controlled by regulating a minimal set
of nodes of the underlying biomolecular regulatory network, based on the concept of the attractor landscape. We
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defined this minimal set of nodes as the control kernel, the regulation
of which ensures that the network state converges to a desired attrac-
tor from any possible initial network state. For this purpose, we
employed a discrete logic-based Boolean network model that can
avoid the problem of parameterization, which is often a critical lim-
itation of continuous dynamic models such as a differential equation
model, especially for large complex biomolecular regulatory net-
works2,12,13. Using the Boolean network model, we developed a gen-
eral algorithm for identifying the control kernel, and we applied it to
various biomolecular regulatory networks. Surprisingly, we found
that the control kernel includes only a small fraction of the total
number of network nodes and that the size of the control kernel
depends on both topological and logical characteristics of the net-
work. We also found that the control kernel of the human fibroblast
signaling network was enriched with drug targets and chemical-
binding interactions, which suggests that targeting the control kernel
of a biomolecular regulatory network could be an effective thera-
peutic strategy. Identifying and regulating the control kernel can also
be useful for controlling the differentiation of stem cells to a specific
cell type, controlling the reprogramming or transdifferentiating of
the differentiated cells in a systematic manner14 or converting a
disease cellular state to a normal state15,16.

Results
Identification of the control kernel. We defined the control kernel
for any desired attractor of a given biomolecular regulatory network
as the minimal set of network nodes needing to be regulated to drive

the network state to converge to any desired attractor regardless of
the system’s initial state. Fig. 1 illustrates the concept of the control
kernel. The toy example network in Fig. 1a shows that the network
state can converge to many different attractors, depending on the
initial network state. However, Fig. 1b shows that the network state
converges only to the desired primary attractor from any initial state
if the three nodes 1,2,7f g are regulated by pinning their states to
those of the primary attractor. Thus, in this example network, the set
of three nodes 1,2,7f g is the control kernel for the primary attractor
(the red nodes in Fig. 1b). To find the control kernel for any bio-
molecular regulatory network, we developed a general identification
algorithm based on attractor landscape analysis (see METHODS).

Control kernel of various biomolecular regulatory networks. We
have investigated the control kernel of various biomolecular regu-
latory networks by applying the kernel identification algorithm to
Boolean network models constructed on the basis of experimental
evidence. These networks include the S. cerevisiae cell cycle network7,
the S. pombe cell cycle network8, the gene regulatory network (GRN)
underlying mammalian cortical area development17, the GRN
underlying A. thaliana development18, the GRN underlying mouse
myeloid development19, the mammalian cell cycle network20, the
cAMP response element-binding protein (CREB) signaling net-
work21, and the human fibroblast signaling network12. We aimed to
identify the control kernel for the primary attractor of each of these
networks (Figs. 2 and 3). We expected that we would have to regulate
many of the network nodes to make all the network states converge to

Figure 1 | An example network and its state transition diagram illustrating the concept of the control kernel. The original network is shown in (a), and

the controlled network, in which the nodes of the control kernel were regulated, is shown in (b). In the upper panel, a red node, red arrow, and blue blunt

line denote a control kernel node, activation link, and inhibition link, respectively. Each dot in the state transition diagram (lower panel) represents a

network state that is composed of all the node values at a certain instant in time, and the same colored dots denote inclusion in the same basin of

attraction.
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a desired attractor because cellular phenotypes are known to be
robust to external perturbations22. Surprisingly, however, we found
that we needed to regulate only a small fraction of network nodes to
drive the network state to the primary attractor (36% for the S. cere-
visiae cell cycle network, 44% for the S. pombe cell cycle network, 10%
for the GRN underlying mammalian cortical area development, 6.7%
for the GRN underlying A. thaliana development, 30% for the GRN

underlying mouse myeloid development, 5% for the mammalian cell
cycle network, 7.8% for the CREB signaling network, and 8.6% for
the human fibroblast signaling network (Table 1)).

The size of the control kernel. We found that the control kernel is, in
general, relatively small in view of the total number of network nodes,
but we also found that its size varies depending on the network. This

Figure 2 | Five biomolecular regulatory networks and their state transition diagrams before and after regulating the nodes of the control kernel.
(a) Saccharomyces cerevisiae cell cycle network. (b) Schizosaccharomyces pombe cell cycle network. (c) Gene regulatory network (GRN) underlying

mammalian cortical area development. (d) GRN underlying Arabidopsis thaliana development. (e) GRN underlying mouse myeloid development.

In (a)–(e), the left, center, and right panels show the original network with the control kernel denoted by red nodes, the state transition diagram of the

original network, and the state transition diagram of the controlled network, respectively. In each state transition diagram, the same colored dots

represent inclusion in the same basin of attraction.
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promoted the question of what determines the size of the control
kernel. To investigate the relationship between the size of the control
kernel and the topological characteristics of a network, we
considered the most representative five topological characteristics:

the average degree, the proportion of inhibitory links, the network
heterogeneity23,24, the clustering coefficient23, and the characteristic
path length23. We conducted a linear correlation test and found that
only the proportion of inhibitory links is significantly positively

Figure 3 | Examples of larger biomolecular regulatory networks and their state transition diagrams before and after the regulation of control
kernel nodes. (a) Mammalian cell cycle network. (b) CREB signaling network. (c) Human fibroblast signaling network. In (a)–(c), the upper, lower left,

and lower right panels show the original network with the control kernel denoted by red nodes, the state transition diagram of the original network,

and the state transition diagram of the controlled network, respectively. In each state transition diagram, the same colored dots represent inclusion in the

same basin of attraction.
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correlated with the size of the control kernel (Table 1 and Supple-
mentary Fig. S1). To investigate the general relationship between the
topological characteristics of a network and the size of the control
kernel, we examined their correlations in random networks of
different sizes and with different types of logical rules for state
transitions (see Supplementary Methods). Only the proportion of
inhibitory links was found to be positively correlated with the size
of the control kernel in these random networks, for all sizes
(Supplementary Fig. S2); however, this correlation was dependent
on the logical rules.

To further investigate why the size of the control kernel has such a
correlation with the proportion of inhibitory links, we explored the
relationship between the size of the control kernel and the dynamical
characteristics represented by the number of attractors and the basin
size of the desired attractor. We can expect that, if a network has
many attractors and the basin size of the desired attractor is small,
then many nodes should be regulated, because most of the network
states would not converge to the desired attractor without external
intervention. To examine this expectation, the average size of the
control kernel was calculated over the number of attractors and
the basin size of the desired primary attractor. We found that the
size of the control kernel was smaller when the network had fewer
attractors and the primary attractor had a larger basin (Supplemen-
tary Fig. S3). We also found that the number of attractors and the
basin size of the primary attractor of a network depended on the
proportion of inhibitory links of the network for most of the logical
rules (Supplementary Fig. S4). Thus, the correlation between the size
of the control kernel and the proportion of inhibitory links (Supple-
mentary Fig. S2) can be explained by the relationship between the
proportion of inhibitory links and number of attractors, as well as the
basin size of the primary attractor (Supplementary Fig. S4).

Topological and dynamical characteristics of the control kernel.
Previous studies have indicated that the degree of a node is an
important topological parameter that determines whether the node
is a ‘‘driver node’’9,10. Thus, we compared the degree characteristics of
the nodes included in the control kernel with those of the remaining
non-kernel nodes. In contrast to the earlier studies, we found that the
nodes of the control kernel do not have any specific degree
characteristics in either the eight biomolecular regulatory networks
(Supplementary Fig. S5) or in the random networks (Supplementary
Fig. S6). However, we found an interesting characteristic for the state
value distribution of the control kernel nodes. For a quantitative
comparison, we defined the ‘‘state coherency’’ of a node to be a mea-
sure of the different state value distributions over all the attractors
(see METHODS for details). We found that the average state cohe-
rency of the control kernel nodes is lower than that of the non-kernel
nodes in both biomolecular regulatory networks (Supplementary
Fig. S5 and Table S1–S8) and random networks (Supplementary
Fig. S6). This result indicates that a node that has different state
values depending on the attractors is more likely to be included in
the control kernel.

The ratio of drug targets and the number of chemical-binding
interactions of the control kernel. Attractors of a biomolecular
regulatory network often represent cellular phenotypes4–6. Thus,
controlling the network state transition to a desired attractor by
regulating the nodes of a control kernel is related to controlling the
dynamic behavior of a cellular system, which suggests that the nodes
of the control kernel might be related to drug targets. We compared
the ratio of drug targets among the nodes of the control kernel with
that of non-kernel nodes for the human fibroblast signaling network.
Surprisingly, we found that all the control kernel nodes were drug
targets, whereas only 29% of the non-kernel nodes were drug targets
(Fig. 4a). This difference was statistically very significant (p-value 5
1.67E24). We further investigated the number of chemical-binding
interactions of the nodes of the control kernel compared with the

number for non-kernel nodes and found that the chemical-binding
interactions were much more enriched for the control kernel nodes
(p-value 5 5.76E26) (Fig. 4b). Figure 4c and d show that the control
kernel contains a larger number of drug targets and chemical-
binding interactions. Taking these findings together, our study
shows that identifying the control kernel might be therapeutically
beneficial by unraveling a pool of novel drug targets.

Discussion
In this paper, we introduce the new concept of the control kernel, and
examine it for various biomolecular regulatory networks on the basis
of attractor landscape analysis. Intriguingly, we found that only a
small fraction of the network nodes belong to the control kernel. This
finding might seem counter-intuitive because cellular systems must
have evolved to be robust against such a small number of molecular
perturbations. However, the combination of the small number of
molecular perturbations in the control kernel is crucial, and most
other combinations of the same number of molecules are not effec-
tive. Thus, in this respect, we can still consider that the cellular system
is robust to random perturbations of a small number of molecules.
Moreover, this result suggests that the cellular system is adaptable
because the perturbation of the control kernel allows the cellular
system to change its dynamic behavior and acquire a new phenotype.

Previous studies that addressed the controllability problem of
complex networks primarily focused on the structural characteristics
of driver nodes, which are nodes whose control is sufficient to fully
control the system’s dynamics9,10. The main findings were that degree
and heterogeneity are the most important determinants of driver
nodes. By contrast, our results showed that not only the topological
characteristics, such as the proportion of inhibitory interactions, but
also the logical rules for state transitions are important in determin-
ing the size of the control kernel because these aspects together define
the dynamical characteristics of a network with respect to the attrac-
tors and basin sizes. We further found that state coherency is a
critical parameter that characterizes the control kernel. This finding
is noteworthy because state coherency better represents the dynam-
ical characteristics of a node rather than the degree, which represents
only the topological characteristics.

It is remarkable that drug targets and chemical-binding interac-
tions were highly enriched in the control kernel of the human fibro-
blast signaling network. Such enrichments were much less significant
for the set of driver nodes9,10 (Supplementary Fig. S7 and Table S9).
This indicates that the control kernel is a better representation of the
biologically meaningful node set than the driver nodes of previous
studies, which suggests that the control kernel could be useful for
identifying new drug targets.

Recently, Liu et al. suggested the concept of an optimal sensor set
defined by the minimal set of network nodes allowing us to recon-
struct the system’s complete internal state (i.e. observation point of
view)25, whereas we proposed the concept of control kernel defined
by the minimal set of network nodes needing to be regulated to drive
the network state to converge to any desired attractor regardless of
the system’s initial state (i.e. control point of view). We compared the
control kernel and the optimal sensor set of the human fibroblast
signaling network and showed that they are composed of very dif-
ferent nodes (see Supplementary Table S9).

As the number of network nodes increases, the size of whole state
space increases exponentially. So, there is a practical limitation in
exactly searching for the whole state space due to computational
complexity. But, we can still investigate the state space of any large
Boolean network model by estimating its attractor landscape on the
basis of random sampling of state transition trajectories (as demon-
strated by one of our example networks, the human fibroblast signal-
ing network which consists of 139 nodes and 575 links). It has been
known that biologically significant attractors have a relatively large
basin26,27 and that they represent distinct cell phenotypes. So, it is

www.nature.com/scientificreports
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computationally tractable to search for such biologically meaningful
attractors and to estimate their basin of attraction. The proposed
method is therefore applicable to any large scale biological network.

Biological variables are continuous and, when we represent
such continuous variables with discrete-state Boolean variables,
we are assuming that discrete-states can still describe the import-
ant states of the system, which has been proved true for biological
networks in many previous studies7,12,26–28. So, the Boolean net-
work model has been widely used for modeling biological systems
and has been proved very useful for analyzing complex biological
phenomena. Continuous dynamic modeling such as ordinary dif-
ferential equation modeling requires parameter estimation and the
simulation result will heavily depend on the estimated parameter
value. For a large scale biological network, such parameter estima-
tion becomes an ill-posed problem (i.e. we have too many para-
meters to estimate compared to the available measurements of the
data)13,29 and it is actually very hard to find optimal parameter
estimates unless we have enough time-series measurements of all
variables. On the other hand, a discrete logic-based Boolean net-
work model can avoid such a problem of parameterization. In this
point of view, a discrete logic-based Boolean network model could
be a more appropriate model for the large complex biomolecular

regulatory networks than a continuous dynamic model for prac-
tical application.

We envision that our study can be used to understand and control
the cell fate determination process. For example, some pioneering
studies on cellular reprogramming showed that only a few inputs are
sufficient to reprogram complex biological processes30–32. However,
the actual event of reprogramming at the level of individual cells still
shows a very low efficiency27. One possible explanation for this obser-
vation is that the initial states of the cells in these experiments are not
the same, which results in convergence to different attractors that
represent different cell phenotypes33. Thus, if we choose the nodes of
the control kernel as reprogramming factors, then we might be able
to improve the efficiency of reprogramming, regardless of the het-
erogeneity in the initial cellular states (Fig. 5a). Another example for
an application of our study is developing a novel therapeutic strategy
by identifying and regulating the control kernel for a normal attrac-
tor such that a pathogenic network state is perturbed and converges
to the normal attractor (Fig. 5b).

Methods
A general algorithm for the identification of the control kernel. To identify the
control kernel of a given biomolecular regulatory network, we must first construct its

Figure 4 | The enrichment of drug targets and chemical-binding interactions in the control kernel of the human fibroblast signaling network.
(a) The enrichment of drug targets in the control kernel and non-kernel. (b) The distribution of the number of chemical-binding interactions in the

control kernel and non-kernel. (c) Network representation of the enrichment of drug targets that shows the overlapping of control kernel nodes and drug

targets. (d) Network representation of the enrichment of chemical-binding interactions that shows the overlapping of control kernel nodes and the nodes

that have a larger number of chemical-binding interactions.

www.nature.com/scientificreports
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state transition diagram, which includes all of the state transition trajectories from
any possible initial state to the corresponding final attractor state. On the basis of this
state transition diagram, we investigated the resulting attractor landscape that
consists of attractors and their basins. For small-scale networks (with the number of
nodes #16), the whole state transition diagram can be constructed, and all the state
transition trajectories can be investigated by a full search. However, for large-scale
networks (with the number of nodes . 16), it is difficult, if not impossible, to
construct the whole state transition diagram because of the resulting computational
limitations. Therefore, in this case, we estimated the attractor landscape by
investigating a number of sampled state transition trajectories from many different
random initial states (10,000 initial states were randomly sampled in this study).

If the state transition diagram contains only a single attractor, then no control
action is required to ensure convergence to this attractor because all the states will
eventually converge to it without any control. However, if there are multiple attrac-
tors, we can identify the control kernel for any desired attractor through the following
algorithm. Overall, the proposed algorithm repeats the followings: (i) random
selection of a candidate node set, (ii) regulation of the candidate node set by pinning
the state value of each node in the set to the corresponding final state value of the node
in the desired attractor, and (iii) investigation of the resulting attractor landscape of
the controlled network to examine the convergence of all possible initial network
states to the desired attractor. We determined the minimal set of nodes that satisfies
(iii) as the control kernel, and we employed a genetic algorithm (GA) to find this
minimal set. GA is a computational optimization algorithm that encodes a candidate
solution with a chromosome and obtains an optimal solution by artificially evolving
the chromosomes using a set of operations, such as selection, crossover, and muta-
tion34. In this study, we defined the chromosome as a candidate node set, and for each
chromosome, its fitness function was evaluated as the resulting basin size of the
desired attractor and number of nodes in the set (see Supplementary Methods, Fig. S8
and S9, for details on the parameter settings, the fitness value trajectories of the
example biomolecular regulatory networks, and the flow diagram of the overall
algorithm).

Random networks. We generated a number of random networks (24,300 in total) to
investigate the general relationship between the control kernel and the network
properties by varying the network parameters (three different network sizes, nine
different average degrees, nine different proportions of inhibitory links, and 100
randomizations) and the logical rules for state transitions (four different types of rules
were considered) (see Supplementary Methods for details).

State coherency. The state coherency of a node is defined as follows:

Ci~
Pm

j~1

Plj

k~1

xijk Bj

m:lj
{0:5

�
�
�
�
�

�
�
�
�
�
z0:5

where Ci denotes the state coherency of node i, m denotes the number of attractors, lj
denotes the period length of attractor j (lj~1 for a point attractor), xijk denotes the k-
th state value of node i in attractor j, Bj denotes the relative basin size of attractor j, and
j ? j denotes the absolute value. The state coherency varies between 0.5 and 1.

Drug targets and the number of chemical-binding interactions. The drug targets,
which were retrieved from the DrugBank database35, included 1,330 proteins that are
targets of the drugs approved by the US Food and Drug Administration (FDA). We
investigated the enrichment of those targets of FDA-approved drugs. The number of
chemical-binding interactions for each protein in the network were investigated on
the basis of the Stitch database36, which provides the experimentally verified
chemical-binding interactions of 6,849 proteins.

Statistical analysis. We performed a one-sided two-sample t-test to compare the
number of chemical-binding interactions of the control kernel nodes with that of
non-kernel nodes, the number of chemical-binding interactions of the driver nodes
with that of the complements of driver nodes, and the number of chemical-binding
interactions of the driver nodes on SBD with the complements of the driver nodes on
SBD in the human fibroblast signaling network. To compare the enrichment of the

Figure 5 | A conceptual diagram that illustrates the potential applications of the control kernel. The nodes of the control kernel can be used as

reprogramming factors that improve the efficiency of the cellular reprogramming, regardless of the heterogeneity of the initial cellular states (a). The

control kernel can also be used for developing a novel therapeutic strategy in such a way that the pathogenic network state is perturbed to return to the

normal attractor (b).
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drug targets between the control kernel nodes (the driver nodes, the driver nodes on
SBD) and non-kernel nodes (the complements of driver nodes, the complements of
driver nodes on SBD) in the human fibroblast signaling network, we performed one-
sided two-sample chi-squared tests on a 2 (control kernel nodes versus non-kernel
nodes, driver nodes versus the complements of driver nodes, or driver nodes on SBD
versus the complements of driver nodes on SBD) 3 2 (drug targets versus the
complements of drug targets) contingency table.
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