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The reverse control of irreversible
biological processes
Kwang-Hyun Cho,*† Jae Il Joo,† Dongkwan Shin, Dongsan Kim and Sang-Min Park

Most biological processes have been considered to be irreversible for a long time,
but some recent studies have shown the possibility of their reversion at a cellular
level. How can we then understand the reversion of such biological processes?
We introduce a unified conceptual framework based on the attractor landscape,
a molecular phase portrait describing the dynamics of a molecular regulatory
network, and the phenotype landscape, a map of phenotypes determined
by the steady states of particular output molecules in the attractor landscape. In
this framework, irreversible processes involve reshaping of the phenotype
landscape, and the landscape reshaping causes the irreversibility of processes.
We suggest reverse control by network rewiring which changes network
dynamics with constant perturbation, resulting in the restoration of the original
phenotype landscape. The proposed framework provides a conceptual basis for
the reverse control of irreversible biological processes through network rewiring.
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INTRODUCTION

For decades, biological processes such as differentia-
tion, tumorigenesis, and cellular aging have been

thought to be irreversible. A stem cell loses its stemness
during differentiation, while a differentiated cell cannot
regain the stemness spontaneously. A non-tumor cell
becomes a tumor cell by genetic mutations or epigenetic
events but a tumor cell cannot return to a non-tumor
cell naturally. An aged cell meanwhile cannot independ-
ently recover youth. However, some exceptional cases
and recent researches have shown the possibility of
their reversion. Budding yeast restores its youth when it
undergoes meiosis.1 Dedifferentiation, a phenomenon
where terminally differentiated cells revert back to a
less-differentiated state, is observed in tissue repair and
regeneration.2–4 Even in mammalian cells including

human cells, gametogenesis and fertilization can cause
reversion of both differentiation and aging. Yamanaka
and others showed that reprogramming of a differen-
tiated cell to a pluripotent stem cell is possible.5–7 It has
also been shown that aged liver stem cells and muscle
stem cells can be rejuvenated by changing the cellular
environment based on heterochronic parabiosis.8,9

Moreover, tumorigenesis can be reversed through the
targeted inactivation of oncogenes.10 This body of evi-
dence naturally raises questions on how we can under-
stand the reversion of such irreversible biological
processes, what the specific requirement for the rever-
sion is, and how we can control the irreversible biologi-
cal processes reversely to obtain their original state.

To answer these questions, we assumed that,
although differentiation, tumorigenesis, and cellular
aging are disparate processes, their irreversibility and
possibility of reversion would share a common prin-
ciple. Moreover, we found that the processes are
regulated by molecular regulatory networks, and that
each process transforms these networks into different
structures. Therefore, in this study, we suggest a uni-
fied conceptual framework for the irreversible biolog-
ical processes based on the ‘phenotype landscape’ of
a molecular regulatory network. The proposed
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framework can describe the origin of irreversibility of
various biological processes and identify the condi-
tions for reversion and reverse control.

A UNIFIED CONCEPTUAL
FRAMEWORK

Most biological processes are governed by physical and
chemical interactions between proteins (Figure 1(a)).
Cells handle environmental changes through vari-
ous signal transduction pathways, which forms a
signaling network. In addition, proteins are
expressed from genes, and genes are regulated by
proteins such as transcription factors. The relation-
ship between proteins and genes can therefore be
abstracted as a gene regulatory network. Compo-
nents (nodes) of these networks are activated/inacti-
vated or increased/decreased in amount according
to their interactions (links) over time; this is called
network dynamics (Figure 1(b) and (c)).

To trace the dynamics of a network, we can
define a ‘network state’ as a tuple of values of net-
work components at a specific time point. When
there is no change in the input signal of the network
system, the network state will follow the inherent
network dynamics determined by interactions
between network components (Figure 1(c)). Eventu-
ally, the network state without any input signal will
converge to a steady state called an attractor state
while the network state with sustained input signals
will converge to another steady state called a pseudo-
attractor state. In this paper, we do not distinguish
between an attractor and a pseudo-attractor as there
is no meaningful biological difference. The trajec-
tories from all the initial states to attractor states
form an ‘attractor landscape’ (Figure 1(d), Box 1).

Recent studies have shown that the attractor
states correspond to the cellular phenotypes in
response to external stimuli. Huang et al. reported
that a particular cell type corresponds to each stable
attractor during the differentiation of HL60 cells
under various conditions, and another group showed
that blood stem cells and blood cell types are attrac-
tor states by analyzing the dynamics of the regulatory
networks based on the Boolean network formal-
ism.11,12 Phenotypes of pancreatic cells were found
to be well represented by attractors from the analysis
of an ordinary differential equation (ODE) model.13

Moreover, cellular responses of cancer cells such as
proliferation, apoptosis, or senescence were repre-
sented by attractors.14–17

Not all the molecules of a biological network
are crucial in determining the cellular phenotype but

rather a limited number of molecules that are charac-
terized as output nodes of the network are rather
critical in ruling the cellular phenotype.18 Therefore,
a phenotype of an attractor state can be defined by
the states of output nodes. Unfortunately, as a net-
work can have more than one attractor state, we
need to define a phenotype space of the network.
According to Gupta et al., cancer cell lines SUM159
and SUM149 were shown to have three cell subtypes
(stem cell-like, basal, and luminal), and the transi-
tions between cell subtypes were proven to be sto-
chastic.19 SUM159 cells are mostly basal cell type
whereas SUM149 cells are mostly luminal cell type.
From this, we infer that these two cancer cell lines
have at least three attractors and that the relative
dominance of attractors is different depending on cell
lines. As more than one attractor can be mapped to a
particular phenotype, we can consider a ‘phenotype
landscape’ as being composed of phenotypes and
their relative dominance (Figure 1(e), Box 1). This
phenotype landscape determines the overall pheno-
type of a network. The relative dominance of a phe-
notype can be measured experimentally by analyzing
the proportion of cell subtypes and predicted mathe-
matically by calculating basin areas, steady state
probabilities, mean first passage time or transition
rate of attractors and phenotypes.14,20,21 A molecular
regulatory network uniquely determines the corre-
sponding attractor landscape, and thus, the pheno-
type landscape can be reshaped by ‘network rewiring’
in our framework. Network rewiring occurs by per-
turbations that change the network dynamics or trans-
form the network topology through induction of
constant changes of node activity or link connections.

All functional events among natural (epigenetic,
genetic, or environmental changes) or artificial (trans-
fection, biomolecule inhibition, or stimulation) per-
turbations can be considered as network rewiring.
For example, epigenetic modification inducing the
formation of heterochromatin will prevent the tran-
scription factor and RNA polymerase from binding
to DNA. Genetic mutations can also induce overex-
pression or knock out of a gene and even delete links
between proteins by modifying the regulatory
domain.22 In addition, a sustained stimulus can be
abstracted as network rewiring because it can pin the
state of a node. These perturbations occur during
biological process and rewire the network of each
process. Therefore, different biological processes
including differentiation, tumorigenesis, and cellular
aging can be represented by reshaping of the pheno-
type landscape. By integrating these, we suggest a
unified conceptual framework for the biological pro-
cesses that are caused by network rewiring.
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FIGURE 1 | A unified conceptual framework. (a) The cell has a signaling network and a gene regulatory network. Each protein and
corresponding node of the network share the same alphabetic notation. (b) The cellular networks can be represented as nodes (circles) and links
(arrows). Sharp and blunted arrows indicate ‘activation’ and ‘repression’, respectively. Input nodes receive an external stimulus and output nodes
determine the phenotypic response of the cell. (c) The dynamics of the network evolves by interaction among nodes over time. Red circles
represent active nodes and white circles inactive nodes. We can define a network state from the activities of nodes. The network states at time L
and L + 1 are the same; such a network state that is not changed over time is called an attractor. (d) From all possible network states, we can
obtain the attractor landscape. Output nodes of the attractor state determine the phenotype (color) of a basin. (e) The phenotype landscape is
obtained from the attractor landscape. Note that the relative dominance of green phenotype is represented as a green area and basins of two
green attractors are projected onto the green area.
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How can we then define the irreversibility of a
biological process? From the perspective of our uni-
fied framework, a reversible process can be defined by
a process in which a phenotype landscape of a net-
work remains unchanged. Although the system under-
goes a state transition from an original phenotype to
another one, a transient stimulus can return the sys-
tem to the original phenotype. On the other hand, an
irreversible process can be characterized by a defor-
mation of a phenotype landscape. Therefore, the orig-
inal phenotype may no longer be on the reshaped
phenotype landscape. To reverse the irreversible

process, we need to reshape the deformed phenotype
landscape to the original phenotype landscape.

THE REVERSE CONTROL

How can we restore the original phenotype by
reverse control? Within the network, the effect of
controlling a node is different depending on the net-
work wiring and dynamics of the node. Identifying
essential nodes for controlling network states has
become a recently highlighted topic in network

BOX 1

ATTRACTOR LANDSCAPE AND PHENOTYPE LANDSCAPE FOR A BOOLEAN NETWORK
MODEL

In this box, we explain how the attractor landscape and phenotype landscape are obtained with the
Boolean network model. In the Boolean network model, each node has two discrete states: turned ON
(denoted as 1) or turned OFF (denoted as 0). We consider a toy example with three nodes: a, b, and c.
The Boolean function for each node is defined as: a(t + 1) = ¬ b(t) ∨ c(t), b(t + 1) = b(t) ∨ ¬ c(t), c
(t + 1) = a(t) ^ ¬ b(t). For all possible initial states S(t) = [a(t), b(t), c(t)], we can calculate the next states
S(t + 1) = [a(t + 1), b(t + 1), c(t + 1)]. In this example, we can find two attractor states, [010] and [101],
that satisfy S(t) = S(t + 1). Finally, we can obtain an attractor landscape for the example (Box Figure (a)).
Note that attractor states have self-targeting arrows, and the basin of [010] is larger than the basin of
[101]. If we assume that node c is an output node, then we can define a phenotype for each basin and
attractor. An attractor [010] can be mapped into the phenotype A (green in the Box Figure (b)) accord-
ing to the value of node c, whereas another attractor [101] corresponds to another phenotype B (blue
in the Box Figure (b)). Therefore, the phenotype landscape is composed of phenotype A, which has
seven states of basin size, and phenotype B, which has one state of basin size.
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Box Figure Attractor landscape of a three nodes example. (a) The topology of an example network.
Circles represent nodes of the network and sharp/blunt arrows show activating/repressing interaction
between nodes. The network state is represented by three digit values. (b) Attractor landscape and phe-
notype landscape. Each circle represents a network state and arrows show relationships between precur-
sor and successor states. The state of output node determines a particular phenotype and distinct colors
show different phenotypes.
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science.23–25 Most studies have investigated struc-
tural controllability by assuming linear dynamics of
the given network structure and time-varying kinetics
of inputs. Such approaches have limitations in appli-
cation to biological systems whose dynamics are
inherently nonlinear and allow only some restricted
inputs under experimental conditions. Only few stud-
ies have considered such nonlinear dynamics of bio-
logical networks with attractors and realistic
inputs.26–28 Cornelius et al. investigated the state
transition from an attractor to another attractor with
a limited number of nodes that can be controlled
simultaneously or a limited range of control effect.26

Kim et al. introduced a ‘control kernel’ of a network
on the basis of the attractor landscape, which is the
minimal set of network nodes required to be con-
trolled for transition from any state to the desired
attractor, by pinning the state of nodes in the control
kernel.27 Zañudo and Albert developed an algorithm
for predicting control targets in a logical dynamic
scheme by identifying the stable motifs of a net-
work.28 However, most studies only considered state

transitions in a fixed attractor landscape. Because the
original attractor and its relevant phenotype can be
removed in the reshaped phenotype landscape during
irreversible processes, those approaches will have
limited applicability for reverse control. To achieve
the reverse control by rewiring a network, a novel
control strategy for reshaping an attractor landscape
is required. For example, Kim et al. found that the
human signaling network can be divided into an
evolvable core and a robust neighbor depending on
whether or not, respectively, perturbations change
the attractor landscape.29 Nodes in the evolvable
core of a network may be the target for the reverse
control. By perturbing the target nodes, we might be
able to induce network rewiring for the reverse con-
trol. Continuous drug administration or genome edit-
ing technology can be utilized for implementing such
control strategies.30

If we control the rewired network to have
exactly the same attractor landscape as the original
one, then the original phenotype could be restored
(Figure 2, top panel). For this strategy, we need to
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FIGURE 2 | Three strategies for the reverse control of an irreversible biological process. The original phenotype landscape is lost by network
rewiring during the irreversible process. To recover the original phenotype, we can consider three strategies: recovering the original attractor
landscape, the original phenotype landscape, or a landscape having the same dominant phenotype. Red X marks represent deletion of links during
the irreversible process, whereas red arrows indicate the recovered links as possible means for the reverse control. Note that the strategy of
recovering the original phenotype landscape is highlighted with a red background.
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recover all the rewired links and nodes because a net-
work and the corresponding attractor landscape have
a one-to-one relationship (Figure 3). However, such
exact control might be unrealistic in practice because
it requires controlling the dynamics of all the mole-
cules within a cell including the mutated genes.
Therefore, we can choose an alternative strategy to
obtain a phenotype landscape that contains the origi-
nal dominant phenotype, the largest portion of the
phenotype landscape, because a dominant phenotype
will be the most observable and robust phenotype of
a cell (Figure 2, bottom panel). Means for recovering
the original dominant phenotype is more realistic
because it needs to recover only a part of the rewired
components or to control other components that
have not been rewired during the irreversible process.
The aforementioned studies controlling the pheno-
type of networks adopt the strategy of recovering the
dominant phenotype; however, as not only the domi-
nant phenotype but also other phenotypes are impor-
tant, recovering only the dominant phenotype might
induce some unexpected consequences.31

As the phenotypes of a cellular system are usu-
ally determined by a small subnetwork or several
output nodes instead of all the nodes, there exist a
vast number of different network structures having a

common phenotype landscape. In other words, net-
works and phenotype landscapes have a many-to-one
relationship (Figure 3). Therefore, we can restore the
original phenotype landscape by rewiring a network
even though we cannot exactly restore the original
network topology (Figure 2, middle panel). Such a
strategy would be more practical than the strategy of
recovering the attractor landscape and also be less
destructive to minor phenotypes than the strategy of
recovering the dominant phenotype.

There are many examples that already imply a
kind of reverse control through network rewiring
and thereby restoring the original phenotype of irre-
versible processes in differentiation, tumorigenesis,
and cellular aging as described in the following
sections.

DIFFERENTIATION

In differentiation, a stem cell and a differentiated cell
have different distributions of DNA methylation and
histone modification.5,32 Pluripotency genes and
stemness genes are locked epigenetically in the differ-
entiated cell but unlocked in the stem cell.33 Such dif-
ferences in network topology can be understood by a

Networks Attactor landscape Phenotype landscape

FIGURE 3 | The relationship among networks, attractor landscape, and phenotype landscape. Networks and attractor landscapes show a one-
to-one relationship. However, more than one attractor landscape can be projected to one phenotype landscape. Therefore, although two network
topologies are different, they can be functionally equivalent in terms of the phenotype landscape.
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spontaneous rewiring of the network, which results
in different phenotype landscapes of the stem cell
and differentiated cell, and eventually the irreversibil-
ity of differentiation. A stem cell activates epigenetic
regulation constantly to maintain pluripotency and
stemness, whereas a differentiated cell should lock
the genes that involve pluripotency and stemness epi-
genetically. The mechanisms of how the cell sophisti-
catedly maintains and changes the epigenetic
regulation are still unknown.33

Nuclear transfer stem cells (NTScs) and induced
pluripotent stem cells (iPScs) are well-defined exam-
ples for reverse control of differentiation by network
rewiring through perturbation. An NTSc is obtained
by exchanging a nucleus of an egg or oocyte and that
of a somatic cell.34 The nucleus of a somatic cell has
the phenotype landscape of a differentiated cell.
However, cytosol of the egg or oocyte contains abun-
dant epigenetic regulatory factors.35 Takahashi
et al. produced iPScs by introducing Yamanaka’s
four factors (Oct4, Sox2, Klf4, and c-Myc), and these
factors guided remodeling of the epigenetic pattern of
stem cell genes.5,33 These epigenetic factors induce
network rewiring and reshape the phenotype
landscape.

TUMORIGENESIS

Cancer arises by accumulation of genetic and epige-
netic alterations that trigger inappropriate activation
or inactivation of specific genes that are critical for
tumorigenesis.36–38 These sequential alterations
cause, at a system level, a dynamic rewiring of the
molecular interaction network and thus, cancer cells
have different network dynamics from normal cells.
In other words, the network rewiring by genetic and
epigenetic alterations allows normal cells to trans-
form to cancer cells and consequently leads cancer
cells to have characteristic phenotypes such as uncon-
trolled cell proliferation.

Oncogenes play a key role in initiating a pro-
gram of neoplasia by inducing genomic instability,
thereby contributing to sustained expression of genes
involved in cell proliferation. Although oncogenes
may no longer be needed after the initiation of
tumorigenesis, the inactivation of such oncogenes is
expected to suppress the development of cancer.
Many recent reports have demonstrated that the
inactivation of oncogenes in vivo in transgenic mod-
els causes oncogene-induced tumorigenesis to become
reversible.10 These results confirmed that tumorigene-
sis induced by several oncogenes, such as MYC and
RAS, could be reversible in various types of cancer

including leukemia and breast cancer by driving can-
cerous states into an anti-proliferative state such as
apoptosis and cell cycle arrest. In many cases, how-
ever, there could be no effect or limited efficacy in
reversibility of cancer when only one or few onco-
genes are inactivated.39 There have been different
approaches that have adopted an alternative strategy
for reversing cancers into another normal state,
rather than the exact original state. The treatment of
cancer cell lines with H1 parvovirus isolated rever-
tant cells by preferentially killing tumor cells. These
revertants have significantly fewer tumor characteris-
tics than the parental cells, and have several reversion
genes, such as SIAH1, PS1 (presenilin 1), TSAP6,
and TCTP. Considerable evidence has shown that
the activation of reversion genes by perturbing sig-
naling pathways involving such genes could drive a
cancer cell to lose its malignant phenotype and halt
the tumor progression.40–42 Recent reports on direct
reprogramming of cancer cells have shown that
human cancer cells can be reprogrammed and finally
differentiated with reduced tumorigenic
potential.43–45 Ohnishi et al. showed that the tran-
sient induction of reprogramming factors by the
withdrawal of doxycycline (Dox) results in kidney
tumor development through epigenetic regulation,
and further reported that no tumor formation was
observed in the kidney of mice generated with iPSCs
derived from the Dox-withdrawn tumor cells. These
findings indicate that epigenetic regulation can con-
tribute to the reversion of tumor cells to nonneoplas-
tic cells.46 These results further imply that network
rewiring by inactivating specific oncogenes, activating
reversion genes, or epigenetic regulation can lead the
cancer system to have a phenotype landscape that
corresponds to a normal system.

CELLULAR AGING

While cells divide, various types of damage inevitably
accumulate in the process of responding to external
stimuli. Genomic instability, telomere attrition, epige-
netic alteration, and loss of proteostasis are represen-
tative cellular damage and hence cause cellular
aging.47 Once cellular damage has accumulated to
some extent, a cell stops dividing and enters another
cellular state called senescence. The increment of
senescent cells in older organisms is the major cause
of organismal aging.48 Once a cell enters a senescent
state, it generates a huge number of different molecu-
lar profiles compared with normal cellular states
including cell cycle-related molecules and extracellu-
lar signaling molecules that regulate the cellular
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micro-environments.49 Several different signaling
pathways including p21/p53 and pINK4A/pRb path-
ways are activated in senescent cells.50 It was recently
reported that the non-canonical WNT pathway is
activated while the canonical WNT pathway is inhib-
ited during cellular aging in skin cells. When the non-
canonical WNT pathway is artificially activated,
accelerated cellular aging was observed.51 Therefore,
the cellular aging can be controlled by activation of
specific cellular pathways and such reshaping of the
phenotype landscape because of different input sig-
nals or cellular damage can induce senescence.

There have been also several recent reports that
even aged cells can be rejuvenated. First, aged cells
can be rejuvenated by injection of specific factors of
young cells. For example, in mouse muscle cells,
growth differentiation factor 11 (GDF11) is
decreased during aging and the aged cells can be reju-
venated by injection of GDF11.52 In the mouse brain,
retinoblastoma binding protein 4 (RbAp48), a his-
tone modifier, is decreased during aging and the
memory performance is recovered by injection of
RbAp48. By injecting RbAp48 in an old mouse, the
differential histone acetylation and activity of protein
kinase A (PKA)/cAMP responsive element binding
protein 1 (CREB1) pathway, central molecular sig-
naling molecules of memory and synaptic plasticity
phenotype, are observed at the cellular level.53 More-
over, this pathway activation by a certain systemic
factor from young mouse blood can reverse cognitive
function of an old mouse.54 Therefore, it is strongly
suggested that PKA/CREB1 pathway activation can
lead to cellular rejuvenation in the mouse brain. In
addition to this cellular rejuvenation, aged cells can
be reprogrammed by ectopic activation of six tran-
scription factors including Yamanaka’s four cellular
reprogramming factors plus Nanog and Lin28.55

Such an aging reversion mechanism can be explained
by cellular reprogramming. Likewise, gametogenesis,
a sporulation process, can reverse cellular aging and
the transient activation of NDT80 leads to cellular
rejuvenation in yeast.1 They showed that the rejuve-
nation process can eliminate various age-associated
damage such as extrachromosomal ribosomal DNA
(rDNA) and aggregated proteins associated with heat
shock protein 104 (Hsp104) foci which are common
age-dependent damage during aging in yeast. This is
an experimental evidence that age-dependent cellular
damage can be repaired, in other words, cellular
aging can be reversed. Overall, these results suggest
that cellular network rewiring by cellular environ-
mental or genetic perturbation, which reshapes the
phenotype landscape, can reversibly control cellular
aging.

DISCUSSION

Our framework was inspired by the theoretical stud-
ies of development. For instance, Waddington intro-
duced a multidimensional phase space to explain
exaggeration of initial differences and robustness of
developmental trajectories.56 In the phase space, a
group of initial points converge to an end point
(robustness of developmental trajectories) whereas
other groups converge to a quite different point
(exaggeration of initial differences). He figured out,
however, that such a multidimensional phase space is
not familiar to most biologists, so introduced a more
intuitive three-dimensional ‘epigenetic landscape’
metaphor. The convergence of initial points in the
phase space was metaphorically explained by a ball
rolling down to a valley upon the epigenetic land-
scape, and the exaggeration of initial differences was
described by an increased number of separate valleys
at the bottom of the landscape. He claimed that the
chemical tendencies of genes shape the courses and
slopes of the epigenetic landscape. In other words,
the network of genes determines the robustness and
direction of developmental processes. Kauffman also
inspired the conceptual formation of this study. He
introduced Boolean network modeling into biology,
and investigated attractors (cycles in his original arti-
cle) of random Boolean networks.57 He described cel-
lular differentiation as a transition between attractors
by ‘noise’, and assumed that the noise should be
‘sharply biased’ for stable and irreversible differentia-
tion. However, the roles of histone modification and
DNA methylation were not known at that time, and
therefore the network rewiring during a developmen-
tal process had not been considered. On account of
this, many biologists inspired by Waddington and
Kauffman believed that state perturbation could be
enough to control biological systems. On the other
hand, we suggest in this framework that state pertur-
bation is not enough to reverse control complex bio-
logical systems but rather the landscape reshaping by
network rewiring should be considered for reverse
control.

In the proposed framework, we can also con-
sider the epigenetic change as network rewiring even
though epigenetic regulation actually happens by
influencing the control of some nodes in the molecu-
lar regulatory network. Such epigenetic regulation
takes much longer time while the genetic regulation
happens in a relatively short period of time in pluri-
potent stem cells.58 Therefore, we could assume that
the epigenetic factors have no change during genetic
regulation. Moreover, as the epigenetic regulation is
much global and its regulatory mechanism is only
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partially known, it is difficult to exactly reflect the
epigenetic regulation in the network model. For these
reasons, we should consider the epigenetic regulation
as a stationary feature in the network rewiring. How-
ever, once considerable (if not all) details of epige-
netic regulation are unraveled, we can extend the
proposed framework to multi-layer or multi-scale
network models to include such epigenetic
regulation.

The biggest challenge in applying the proposed
framework to real biological systems is constructing
a meaningful dynamic network model that can realis-
tically reproduce the previously observed biological
phenomena. A sufficiently accurate network model is
already available for a small-scale circuit that has
been well studied (e.g., p53 regulatory network),14

however, such a model is not currently available for
a large-scale molecular regulatory network in a way
to be directly used to implement the proposed strat-
egy for reversely controlling the cellular phenotypes;
there are still many genes and proteins whose func-
tions, interactions, kinetic parameters, and regulatory
logics have not been discovered yet. This means that
the network model is not complete and contain many
uncertainties. Nevertheless, we can assume that a
large portion of key molecules are available and that
more information is becoming available in an acceler-
ated way these days. On the other hand, control of
systems with uncertainties (called robust control) has
been well studied in control engineering. Recently,
robust control theory was applied to controlling
complex networks with unreliable components.59

Interestingly, in case of the structural controllability,
it was found that the order of required number of
driver nodes for robust control was same as that for
control of a system without uncertainty. So, the ideas
obtained from robust control theory can help us con-
trol uncertain biological network systems which still
contain some dark matters in terms of the underlying
molecular details. In addition, much more biological
data are becoming accumulated and shared by many
research groups because of high-throughput measure-
ment technologies and many promising algorithms
for data-driven network modeling are being

developed, so the current uncertainties of network
model will be filled out in the near future.18,60–64 In
the recent study,14 a novel therapeutic target for
breast cancer was identified through dynamics analy-
sis of a small-scale p53 regulatory network model on
the basis of its attractor landscape. This can be an
example illustrating the potential application of the
proposed theoretical framework to finding an action-
able target for network rewiring that can induce a
desired biological phenotype. We expect many other
novel therapeutic targets for tumor reversion, rejuve-
nation, or regenerative medicine can be found simi-
larly by applying the proposed framework to various
network models in the near future.

CONCLUSION

Differentiation, tumorigenesis, and aging are repre-
sentative examples of irreversible biological pro-
cesses. We suggested a unified conceptual framework
in which the irreversible processes caused by network
rewiring could be reversed by a different way of net-
work rewiring. In this framework, the network rewir-
ing induces reshaping of the attractor landscape and
the corresponding phenotype landscape, conse-
quently allowing the reverse control of irreversible
biological processes.

Predicting phenotype from genotype is one of
the most important issues in understanding pheno-
typic differences of individuals such as disease suscep-
tibility, rate of aging, and life span.65 The relationship
between phenotype and genotype is very complicated
because they are intercorrelated by dynamic interac-
tions amongst thousands of proteins that are
expressed by genes (genotype) and regulate cellular
functions (phenotype). As a result, dynamic character-
istics of a cellular network and its stable states,
namely the attractor landscape, are key mediators
between genotype and phenotype. Therefore, the pro-
posed conceptual framework which represents cellular
phenotype through an attractor landscape and allows
controlling phenotypes by network rewiring, can also
be useful in predicting phenotype from genotype.
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