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Abstract

Cancer is a complex disease for which conventional thera-
peutic approaches often encounter a fundamental limitation.
As an alternative approach, there is a renewed challenge in
systems biology for cancer reversion by converting cancer
cells into normal cells. Historically, such reversion has been
observed sporadically, but no systems analysis has been
attempted so far. We review the phenomenal observations of
cancer reversion in history and introduce two relevant systems
biological approaches based on molecular network modeling.
We further introduce the recent development of network con-
trol strategies that can be used to identify useful molecular
targets for cancer reversion and then discuss future challenges
in systems biology.
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Introduction

Cancer is becoming more important as our society is
getting aged [1]. There is, however, a fundamental
limitation in cancer treatment despite the recent
development of targeted therapy and immunotherapy
[2,3]. The goal of conventional cancer therapy is to
induce apoptosis of cancer cells. The ultimate limitation
of this approach lies in that cancer cells are still a part of
ourselves and therefore we cannot selectively remove
them without damaging normal cells. Can we consider
then an alternative approach other than inducing
apoptosis? We propose reversing cancer cells into normal

cells instead of directly killing them. Such concept of
cancer reversion is not new [4], but there is a renewed
challenge in the era of systems biology.

Historically, the phenomena of cancer reversion have
been observed sporadically [5], but the underlying
mechanism has not been understood and no systems
analysis was attempted. From a systems biological
perspective, cancer can be viewed as a network disease
caused by dysregulation of the dynamics of an intracel-
lular molecular regulatory network [6]. Thus, considering
the huge dimensionality and functional redundancy of
the molecular network, we might be able to restore the
network functionality of normal cells by controlling some
of the molecular targets in the network.

In this review, we first review the historical observations
of cancer reversion (Table 1). Then, we introduce two
systems biological approaches for cancer reversion: data-
driven statistical network modeling approach and
mechanism-based logical modeling approach. We further
review the recent development of network control in
order to identify useful molecular targets for cancer
reversion based on network models. Finally, we discuss
the future challenge of systems biology for cancer
reversion.

History of cancer reversion

The first observation of cancer reversion was reported in
1907 [7]. It was about the phenomenon that ovarian
teratoma was spontancously differentiated into a normal
somatic cell lineage. Since then a number of similar
phenomena have been occasionally reported, not only in
mammals, but also in plants, newts, and other various
organisms [8,9,31]. Among them, the most important
evidence for cancer reversion was the discovery by
Mintz et al. in 1975 that blastocysts injected with
embryonal carcinoma cells were successfully developed
into normal organs and tissues [12]. This clearly impli-
cates that cancer cells can be reverted to normal cells
that have controlled proliferation and regular tissue-
specific functions. Not only the embryonal carcinoma,
a specific cancer cell type not necessarily harboring so-
matic mutations, but also other cancer cells with somatic
mutations or aneuploidy were observed to be revertible
to normal states [32,33].
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Table 1
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Summary of the history on cancer reversion.

Year Descriptions Reference

Early discoveries

1907 Ovarian teratoma cells were differentiated into normal-like cells. [7]
The first observation related to cancer reversion.

1951 Plant tumors could recover their normal phenotypes through sequential transplantation into healthy plants. [8]

1965 Hamster cells transformed by Rous Sarcoma Virus were partially converted to non-tumorigenic cells showing [9]
the growing pattern of untransformed cells.
This observation implied that the cancer with irreversible alterations such as mutation and oncogene
amplification might be reversible to normal-like states.

1968 Survived cancer cells after FUdR treatment could achieve morphologically normal phenotypes [10]
(these cells were called ’flat revertant’) and lost their colony forming capability in vitro.

1973 Embryonic mammary mesenchyme induced the differentiation of mouse breast cancer cells. [11]

1975 Normal genetically mosaic mice were successfully developed from blastocysts injected with [12]
malignant teratocarcinoma.
This study suggested that the teratoma injected in blastocysts might develop to any type
of tissues and could produce functional germ cells.

Microenvironmental changes

1997 Three dimensional culture with integrin-blocking antibody successfully reversed [13]
human breast cancer cells into non-malignant cells.

1998 Mouse liver cancer cells were differentiated into normal hepatocyte in splenic microenvironments. [14]

2008 Nodal-inhibition triggered the reversion of human melanoma cells toward normal melanocytic phenotypes. [15]
This study showed that embryonic microenvironments might effectively suppress malignancy
and differentiate cancer cells such that they have normal phenotypes.

Direct differentiation

1988 The first clinical trial of ATRA in patients with APL. All 24 participants of the trial showed [16]
a complete remission.

1998 Inhibition of PPAR-y caused the differentiation of human colorectal cancer in vitro and in vivo. [17]

2001 HDAC inhibitors effectively blocked the proliferation of various human breast cancer cells and [18]
successfully differentiated them into morphologically normal cells.

Oncogene addiction

1999 The tumorigenesis induced by Myc-hyperactivation in hematopoietic lineages was reversed to their [19]
original non-tumorigenic states by inactivation of Myc.

2000 The term ’oncogene addiction’ was first proposed to explain the death or differentiation of [20]
cancer cells by inhibition of a single oncoprotein.

2000 Ablation of Bcr-Abl in acute B-cell leukemia reversed cancers cells without apoptosis and showed [21]
complete remission in a mouse model

2007 Suppressed Myc expression rescued intestinal neoplasia caused by Apc loss. [22]

2015 Apc restoration re-established a normal crypt-villus structure in intestinal carcinoma. [283]
This study showed that the reversed cells can recover the normal function of intestinal cells and
make a balance between self-renewal and differentiation.

Direct reprogramming

2004 Human melanoma cells were reprogrammed into normal pluripotent stem cells by nuclear transplantation. [24]
The reprogrammed cells were then normally differentiated into multiple cell types such as melanocytes,
lymphocytes, and fibroblasts.
The first nuclear reprogramming study using cancer cells.

2010 Gastrointestinal cancer cells were reprogrammed into induced pluripotent stem cells that have slowly [25]
proliferating characteristics and reduced tumorigenicity.

2013 Induced pluripotent stem cells derived from glioblastoma were re-differentiated into malignant [26]
neuronal progenitor cells, but they became nonmalignant cells when differentiated into non-neuronal lineages.

2015 Acute lymphoblastic leukemia cells were transformed to non-malignant macrophages [27]
when exposed to myeloid differentiation-promoting cytokines

Other methods

1989 Krev-1 reduced malignancy by converting cancer to flat revertants that have relatively normal-like [28]
phenotypes such as reduced proliferation and lowered tumor-producing capability in vivo.

1993 The revertant cells derived by H-1 parvovirus, the specialized type of virus preferentially killing cancer cells, [29]
showed significantly lower tumorigenicity in vitro and in vivo.

2002 Comparison of the gene expression profiles between flat revertant cells and their original cancer state cells [30]

revealed that SIAH1 and tpt1/TCTP might be the revertant-inducing factors.

FUdR, floxuridine; ATRA, all-trans retinoic acid; APL, acute promyelocytic leukemia; PPAR-vy, peroxisome proliferator-activated receptor gamma; HDAC,
histone deacetylase.
Significance and implication of the studies are highlighted in bold.
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Subsequent to these early discoveries, three major
research streams associated with cancer reversion were
independently developed since 1980s. First, microen-
vironmental conditions for cancer reversion were
investigated. Interestingly, embryonic microenviron-
ments are found to be important to reverse many cancer
cell types such as breast cancer, prostate cancer, and
melanoma [34]. For instance, Nodal inhibition was
considered as the direct molecular mechanism that
causes melanoma reversion by observing the difference
between embryonic microenvironment and cancer
microenvironment. The major difference was the exis-
tence of Nodal antagonizing factors in embryonic
microenvironment that inhibit Smad2/3 signaling path-
ways [15,35]. In addition, Weaver et al. found that
integrin blocking can successfully reverse breast cancer
cells to normal-like cells using 3D culture [13]. These
indicate that alteration of microenvironments could
reverse tumorigenecity by modulating extrinsic factors
such as extracellular matrix and TGF-B superfamily.
Another approach was differentiation therapy. For
instance, retinoic acid (RA) was found to differentiate
cancer cells into non-proliferative cells [36]. Its efficacy
was profound for acute promyelocytic leukemia (APL),
and the subsequent transcriptomic and proteomic data
analysis suggested its potential mechanism as activation
of calcium, interferon, and proteasomal signaling path-
ways [37]. Notably, its clinical trials on APL showed
complete remission of cancer even for those who had
resistance to previous chemotherapy [36]. In addition,
peroxisome  proliferator-activated receptor gamma
(PPAR-g) and histone deacetylases (HDACs) were also
found to be such differentiating factors in colorectal
cancer and breast cancer, respectively [17,18]. The third
approach was based on the concept of oncogene addic-
tion. In this approach, Myc inactivation was found to
induce growth arrest or differentiation in various types
of cancer such as lymphoma, osteogenic sarcoma, skin
papilloma, and islet-cell adenocarcinoma [38]. Recently,
it was found that Myc deletion can revert cancerous in-
testinal tissues to healthy normal crypt-villus structures
in mice [22].

While the three main approaches were continuously
extended, another promising approach was suggested
from the stem cell research field since 2000s. It was the
reprogramming technology that unprecedentedly facil-
itated fate conversion from a certain cell type to another.
Intriguingly, induced pluripotent stem cells derived
from cancer cells seemed to be normal even when they
were further differentiated into particular cell lineages
[24,25,39]. For instance, Zhang et al. observed that
reprogrammed sarcoma can be terminally differentiated
into bone or fat without tumorigenicity [40]. Such
observation implies that the genetic abnormality of
cancer cells might be overcome by epigenetic reprog-
ramming. Recent observations show that B cell acute
lymphoblastic  leukemia could be successfully

reprogrammed into non-malignant macrophages [27]
and that restoration of Apc can revert a cancerous crypt
into a normal functional crypt [23].

Although aforementioned reversion factors are various
molecular components (e.g. cytokines; Nodal, tran-
scription factors; Mye, epigenetic regulators; HDACS,
and metabolites; RA), their biological functions are well-
known to perform a central role in cell fate decision such
as differentiation, development, proliferation, and
apoptosis [38,41,42]. This agrees with that a hub node, a
central molecule in biological networks, is crucial in
biological systems [43]. However, the functional role of
reversion factors might depend on cellular context and
thereby the precise molecular mechanism still remains
mostly elusive. Therefore, systems biological studies on
cancer reversion are required not only to identify more
promising molecular targets in a systematic way but also
to reveal the underlying mechanism at a system-level.

Data-driven statistical network modeling
Although there have been a number of experimental
reports showing the possibility of cancer reversion, we
should note that most of them focused on a few confined
phenotypes such as growth rate, mobility, and survival
potential. This means that none of the previous studies
actually showed the explicit reprogramming of cancer
cells at a molecular level. On the other hand, some
recent studies of trans-differentiating cell identity
showed the possibility of determining the molecular
mechanism of cancer reversion in terms of cellular
reprogramming. In particular, some of them employed a
data-driven statistical network modeling approach to
identify reprogramming factors. For instance, Carro et al.
inferred glioblastoma multiforme (GBM) network and
converted a mesenchymal subtype into a proneural
subtype [44]. Suva et al. also showed that differentiated
GBM cells can be reprogrammed to stem-like tumor
propagating cells by introducing several neuro-
developmental transcription factors [45].

The recent data-driven approach was motivated by the
developmental fate conversion studies [46—49] which
share a common basis that cellular reprogramming can
be achieved at a transcriptional level (Figure 1a). In
other words, cellular identity is determined by the gene
regulatory network and the master regulators that are at
the top of the regulatory network [50], and each mo-
lecular state corresponding to a certain phenotype can
be inferred from gene expression profiles. These studies
are exemplary frameworks of inferring gene regulatory
networks, identifying master regulators for specific
cellular identities, and converting cell identities upon
these frameworks [47—49]. Similar approaches were
also applied to cancer cells to identify causal driver
genes and to displace the cancerous identity [44,51,52].
Among them, Carro et al. identified two transcription
factors (C/EBPP and STAT3) as master regulators based
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Data-driven statistical network modeling approach. (a) Previous studies on cell type conversion based on the data-driven statistical network modeling
approach. The origin of cell type conversion study can be traced back to the reprogramming of adult fibroblasts to induced pluripotent stem cells by

extrinsic overexpression of Oct4, Sox2, KIf4 and Myc [46]. Since then a number of case studies on hematopoietic, neuronal, and myocardial lineages and
other numerous developmental cell types were conducted by overexpressing several master regulators identified by the data-driven approach [47—49]. In
the figure, a cell type is represented by a unique expression profile and it was presumed that a few master regulators govern the whole transcriptomic
landscape. To find out these master regulators, we can employ data-driven statistical network inferences that were developed primarily focusing on the
correlation of expressions. Since steady-state gene expression profiles were mostly considered in this case, we can only infer directed acyclic networks.
(b) lllustration of cancer reversion at a network-level. Like most other developmental cell fates, both cancer and normal cellular states can be represented

by their unique gene expression profiles. However, the aberration in signaling pathway molecules, which is the critical factor distinguishing between
cancer and normal cellular states, should be investigated at multi-dimensional aspects.

on the fact that their gene expression patterns are highly
associated with mesenchymal genes of GBM and that
they are at the top of the hierarchical transcriptional
regulatory network [44].

"This data-driven approach, or reverse engineering, pre-
sumes that cellular phenotypes display their own mo-
lecular profiles at steady states, and a few master
regulators of each steady state can control the whole
transcriptomic landscape. Hence, the data used for
network inference in this approach are mostly steady-
state gene expression profiles and therefore the infer-
red network represents statistical associations between
molecules.

An important advantage of data-driven statistical
network modeling approach is that the resulting
network can be of genome-wide scale without any bias
and represent a cell-type specific context. As more data
are being accumulated in life sciences, this data-driven
approach would become a more powerful tool to estab-
lish the reprogramming technology. However, the data-
driven statistical network modeling approach has a
fundamental limitation in identifying direct causality

and taking account of the feedback regulation among
biomolecules. This critically affects inferring signaling
pathways which contain many complex regulations
including feedback loops. Considering that most mo-
lecular aberrations in cancer occur at a proteomic level,
particularly for signaling molecules, we can infer that
normal and cancerous states have demarcation at a
multi-dimensional level including not only transcription
factors, but also signaling proteins and epigenetic reg-
ulators (Figure 1b). In this regard, we note that some
recent studies figured out hidden regulatory molecules
beyond the transcription factors using integrative
frameworks [51]. Moreover, recent studies on network
modeling based on phosphoproteome or metabolome
enable us to identify such master regulators that can
determine not only gene expression levels but also
metabolic and proteomic states [53,54]. Therefore,
multi-dimensional omics data-driven modeling will be
crucial for cancer reversion. In summary, the data-driven
statistical network modeling approach showed remark-
able achievements in converting developmental cell
fates, but still has a lot of challenge to be used for cancer
reversion for which we need to consider more sophisti-
cated regulatory mechanisms.
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Mechanism-based logical network

modeling

A data-driven statistical network model can provide us
with a snapshot of the particular cell phenotype, but not
the dynamical function of a cellular system in consid-
eration of input—output relationships. Therefore, there
is a fundamental limitation in dealing with the func-
tional difference between normal and cancer cells with
respect to the dynamical aspect using the data-driven
statistical network model. A biological function can be
represented by an input—output mapping of the cellular
system. For instance, typical hallmarks of cancer such as
insensitivity to anti-growth signals and evading
apoptosis are the examples of different outputs of
cancer cells from normal cells to the same input signals
[55]. To address such dynamic properties of a cellular
system, a mechanism-based logical network model is
needed (Figure 2a). It can be constructed by integrating
all the experimental findings about biochemical in-
teractions between molecules where each link in this
model represents a real causal relationship. Using this
model, we can investigate the dynamic change of each
molecular activity that is determined by the complex
regulation of the network. When we consider the overall
network state change and investigate its converging
dynamics, an attractor landscape analysis is often useful
where an attractor represents a final steady state or a set
of cyclic states to which a given initial state converges.
Attractor states of a molecular regulatory network are

Figure 2

determined by the wiring pattern and regulatory logics
among the molecules. It is well known that negative
feedback can induce an oscillatory behavior through a
cyclic attractor whereas positive feedback can induce
multi-stationarity by resulting in multiple stable points
[56,57]. Hence, attractor states of a network can be
changed by perturbing potential regulatory molecules or
regulatory logics of the feedback loop. For instance,
negative feedback loops of p53 through Mdm2 and Wip1
contribute to the oscillatory behavior of p53 in response
to DNA damage by activating a cyclic attractor that
corresponds to cell cycle arrest. In this case, by
disrupting the negative feedbacks with Mdm2 or Wip1
inhibition, the sustained activation of p53 can be
induced through a point attractor state that represents
apoptosis [58]. The attractor landscape consists of all
the attractors as well as their basin of attraction. By
including the inputs to a cellular system as a part of the
network nodes, the input—output relationship can also
be represented in the attractor landscape.

The logical network model can be employed to inves-
tigate the hidden mechanism underlying the cancer
reversion. Some relevant studies were reported recently.
For instance, Fumia et al. reconstructed a Boolean
network model of cancer cells and showed how cancer
cells can produce different responses than normal cells
to the same input according to their internal states [59].
In addition, Choi et al. showed how normal breast cells

(a) Mechanism-based (b)

Cellular systems logical network model
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Cancer
reversion

Q" .
<

|- state Output 1: Output 2: Output 1: Output 2:

Uncontrolled
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Uncontrolled
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Controlled
proliferation
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Attractor landscape analysis for cancer reversion using mechanism-based logical network modeling. (a) A cellular system and its attractor
landscape of the underlying molecular interaction network. The cell consists of numerous molecules that are interacting with each other to form a huge
dynamic interaction network. The interaction between molecules constrains each molecular activity and the network dynamics driven by such interactions
determine the network state (i.e. a collection of the activity levels of molecules) which eventually converges to a (pseudo-) steady state, or attractor. The
attractor is determined by inherent dynamics of the network as well as the initial state which can also include the input values. An attractor landscape of a
cellular system consists of all attractors and their basin of attraction. Pr, Ar, and Ap stand for proliferation, arrest, and apoptosis, respectively. (b) lllus-
tration of differential landscapes of normal and cancer cells. Normal and cancer cells exhibit different cellular identities, such as input—output relation-
ships, since they have different attractor landscapes even though they have the same attractors. In this respect, cancer reversion can be interpreted as a
recovery process toward the attractor landscape of a normal cell.
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Figure 3
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Identifying control targets for cancer reversion based on the study of complex network control. (top) For data-driven statistical network models,
the network control problem is to identify master regulator(s) that can cover maximal target genes to be controlled while maintaining minimal influences on
off-target genes. The data-driven statistical network models are usually in the form of a directed-acyclic graph having a hierarchical structure. Hence, the
master regulators in the top hierarchy may regulate many off-target genes whereas the regulators in the low hierarchy may not sufficiently cover the target
genes to be controlled. The key issue is therefore to identify optimal master regulator(s) that can make a balance between such specificity and sensitivity.
(bottom) For mechanism-based logical network models, previous studies on the network control have usually focused on the transition between
attractors in a given attractor landscape. However, for cancer reversion, we need to develop a new control strategy by which the attractor landscape of
cancer can be reshaped to restore the input—output relationship of the normal cell.

www.sciencedirect.com Current Opinion in Systems Biology 2017, 2:48-57


www.sciencedirect.com/science/journal/24523100

54 Regulatory & metabol network/Cancer & syst dis (2017)

and breast cancer cells differently respond to the same
DNA damage signal by analyzing their attractor land-
scapes [58]. The dynamical input—output cellular re-
sponses of urinary bladder cancer and colorectal cancer
were also investigated using the logical network model
[60,61]. These examples demonstrate the potential
applicability of the mechanism-based logical network
model to the systems biological study of cancer rever-
sion with a particular focus on signaling pathways [62].
Recently, some niche factor requirements were revealed
to be critical in distinguishing between colon epithelial
cells and colon cancer cells, which indicates that niche
factors such as Wnt and epidermal growth factors
(EGFs) are crucial for normal epithelial maintenance
but not in cancer cells [63]. Together, the attractor
landscape analysis of a mechanism-based logical network
model might be useful for revealing the hidden mech-
anism of cancer reversion and establishing a systematic
strategy for it [64] (Figure 2b).

Despite the aforementioned potential applicability, the
mechanism-based logical network modeling has also
limitations. Although many molecular interactions were
revealed over last two decades, there are still some un-
known interactions to be further discovered which will
constitute an uncertainty of the resulting model.
Another difficulty is reflecting a detailed cellular
context to the model where the contextual information
should be obtained from ## situ analysis. We can over-
come these limitations by combining the mechanism-
based logical network modeling with the data-driven
statistical network modeling [65,66].

Network control strategy

We reviewed two different approaches for network
modeling that can be used for cancer reversion.
Choosing an appropriate modeling depends on how to
define the normal and cancerous cellular states. In any
case, we ultimately arrive at a network control problem,
identifying control target(s) in the network for cancer
reversion.

The control problem upon the data-driven statistical
network model is to find out a master regulator where
the perturbation of which subsequently regulates all of
its target genes. In this case, the master regulator is
generally a hub node located at a top in the hierarchy of
the subnetwork (Figure 3, top). A few algorithms were
developed to infer such master regulator that de-
termines a specific cellular identity [48,49]. The major
issue in this case is optimizing the balance between
sensitivity and specificity of the network control. For
instance, controlling the master regulator of the highest
network hierarchy can achieve high sensitivity but
would result in low specificity. "To resolve this problem,
we can make use of the recent developments in the field
of complex network control [67]. Liu et al. applied the

structural controllability to directed complex networks
and developed an efficient method which can be used to
identify a minimal set of driver nodes for controlling any
network state to a desired state [68]. We can further
apply this idea to identify useful control targets for
cancer reversion.

On the other hand, the mechanism-based logical
network model describes the nonlinear dynamics of a
cellular system. In this case, the attractor landscape
analysis might be useful to investigate the overall dif-
ference between normal and cancerous cellular states in
order to further develop a control strategy for cancer
reversion. Recently, some remarkable studies were
conducted in this framework which suggested various
control strategies by iteratively perturbing network
nodes [69] or links [70], or by pinning some molecular
activities of nodes [71]. For instance, Cornelius et al.
suggested a control strategy that can drive a cancerous or
precancerous network state to an apoptosis state upon
the T-cell survival signaling network model [69]. How-
ever, for cancer reversion, we might need to reshape the
attractor landscape itself instead of simply relocating the
network state upon a fixed attractor landscape of cancer
cells to recover the functional input—output relation-
ship of normal cells [72]. Here, the attractor landscape
of cancer cells can be characterized by a dysregulated
cellular response for uncontrolled proliferation regard-
less of input signals (Figure 3, bottom). For cancer
reversion, we might need to rewire the network by
constitutively controlling some target nodes or links
such that the dynamics of the rewired network are
changed, leading to reshaping of the attractor landscape.
This remains as a future challenge in systems biology for
cancer reversion.

Conclusions

Although the first observation of cancer reversion was
reported more than a hundred years ago and many bio-
logical evidences have been accumulated so far, the
underlying mechanism is still largely unknown and no
systems analysis has yet been attempted. We introduced
two relevant systems biological approaches for cancer
reversion: data-driven statistical network modeling and
mechanism-based logical network modeling. Both have
advantages and disadvantages. Therefore, combining
these two approaches would be an important future
challenge in systems biology. Furthermore, there is a
pressing need to investigate microenvironmental con-
ditions for cancer reversion. Such microenvironmental
conditions can be incorporated as input signals to the
network model. Developing multi-scale models by
integrating intracellular signaling pathways and extra-
cellular microenvironments remains as a future chal-
lenge [73,74]. The network control strategy is also a
crucial issue and its development will further accelerate
the study of cancer reversion.
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Intra-tumor heterogeneity and incomplete network
models might be barriers in applying cancer reversion
strategy to clinics. To overcome these problems, we
could adopt the idea of robust control from control en-
gineering, which is a kind of control method ensuring
controllability when a system has uncertain components
of structural changes [75]. Moreover, mutational het-
erogeneity among patients might be another barrier
since such heterogeneity could result in different
outcome between patients against the same control
strategy. To solve this problem, we could develop
network modeling approaches combined with patient-
derived genomic and molecular information, thereby
providing patient-specific strategy for cancer reversion
[64]. Altogether, this intriguing and critical subject from
a basic science perspective can also provide an alterna-
tive paradigm of current cancer treatment from a clinical
point of view.
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