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Minimal intervening control of 
biomolecular networks leading to a 
desired cellular state
Sang-Mok choo  1, Sang-Min park2 & Kwang-Hyun cho  2

A cell phenotype can be represented by an attractor state of the underlying molecular regulatory 
network, to which other network states eventually converge. Here, the set of states converging to each 
attractor is called its basin of attraction. A central question is how to drive a particular cell state toward 
a desired attractor with minimal interventions on the network system. We develop a general control 
framework of complex Boolean networks to provide an answer to this question by identifying control 
targets on which one-time temporary perturbation can induce a state transition to the boundary of a 
desired attractor basin. examples are shown to illustrate the proposed control framework which is also 
applicable to other types of complex Boolean networks.

Various complex phenomena across different disciplines are often explained by the complicated interactions of 
their constituting elements, resulting in a class of models called complex networks1–4. In the study of complex 
networks, our ultimate goal is to control their steady state behavior such that a desired behavior is achieved5. For 
instance, in cancer study, we want to identify target molecule(s) in the complex intracellular molecular regulatory 
network that can effectively induce apoptosis of cancer cells, where the desired steady state behavior is apoptosis 
represented by a particular converging steady state of molecules, called a desired attractor6.

A number of studies have been conducted to control complex networks and to achieve a desired behavior, 
but most of them assumed persistent perturbation of the identified target elements7–11. Such approaches, how-
ever, have critical limitations if the duration of perturbation is difficult to be specified in advance or persistence 
perturbation might cause other significant problems as in the case of biomedical applications where long-term 
treatment of drugs might cause resistance or side-effects12. So, in this study, we present a different kind of Boolean 
network control based on temporary perturbation instead of persistent perturbation. Moreover, to achieve mini-
mal intervention, our control strategy drives any initial state of a complex Boolean network only to the boundary 
of basin of attraction to the desired attractor where a state in the basin autonomously converges to the corre-
sponding attractor eventually. This boundary-reaching control (BRC) can ensure to achieve the desired steady 
state behavior of any complex Boolean network by only temporarily perturbing the identified minimal number of 
control target nodes. To implement the BRC, we need to find out the exact basin of attraction of a given desired 
attractor and to further delineate the boundary of a basin with respect to the current initial state of a network. 
There is, however, a computational challenge in identifying such an exact basin due to the computational com-
plexity that increases exponentially with the network size13. Here we present an algorithm to identify the exact 
basin of attraction using the topological property as well as regulatory logics of complex networks. We also pres-
ent an algorithm to identify the boundary of a basin by measuring the distance between the current state and the 
basin in the state space. We can then identify control targets for BRC from the information of boundary. Our BRC 
is applicable irrespective of the relative size of basin of attraction while it becomes easier to identify control targets 
when the basin of a desired attractor is large enough.

We illustrate the BRC using toy example networks and demonstrate its usefulness by applying it to biomolecu-
lar regulatory networks of different scales. We further show that it can also be applied to other types of complex 
networks such as an ecological network and an insect social network. The BRC is a generic control strategy 
applicable to any complex Boolean networks and it ensures the convergence of any network state to the desired 
attractor through minimal and temporary intervention of network dynamics.
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Results
overview of boundary-reaching control. The BRC can be summarized in three steps as shown in Fig. 1a. 
Let us consider a Boolean network model in Fig. 1a where its state update logics are given (Supplementary Fig. 1) 
and its current state is at an undesired state α which will eventually converge to an undesired attractor. Since BRC 
is a control strategy to drive the undesired state to a state in the basin of a desired attractor β in Fig. 1a by perturb-
ing a minimum number of nodes, we first need to identify the exact basin of the desired attractor and search a 
minimum set of target nodes (first step i  in Fig. 1a). Each basin state is hierarchically identified in a sequential 
manner: the desired attractor state is located at the 1st layer. A given state Sℓ at the ℓth layer (ℓ ≥ 1) is substituted in 
the state at time step t + 1 in the Boolean update rules to get a system of equations and the solution states Sℓ+1 are 
located at the (ℓ + 1)th layer, where the given state is called a terminal basin state if no more solution state is calcu-
lated. The first step is completed when every terminal basin state is identified. The boundary concept of the basin 
(second step ii  in Fig. 1a) is related to a basin state to which α is driven to transit by perturbing (i.e. changing) 
some nodes’ values in α, where these nodes are called “control target nodes” and the number of these nodes is a 
“Hamming distance (HD) from α to the basin state”. In particular, a minimum set of control target nodes with 
their target values is referred as a “minimum control target set”. A basin state is called a “boundary state from α” 
if the basin state is located away from α with the minimum HD (mHD), and the set of boundary states from α is 
referred to as the “boundary of the basin from α”. For instance, in the right of Fig. 1a, the HD between the basin 
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Figure 1. Overview of BRC. (a) The overall flow of BRC process is illustrated in three steps. Given a Boolean 
network model (top right: arrows and bar-headed lines represent activation and inhibition, respectively) and a 
desired attractor state β (A, B, C, D, E, F, G) = (1, 0, 1, 1, 1, 1, 0), the first step i  (middle right) is to identify the 
exact basin of β in a hierarchical and algebraic way, searching from β to the terminal states of state transition 
trajectories. So, the exact basin contains those states upon the state transition trajectory from the terminal state 
(0, 0, 1, 0, 0, 0, 0) to β, represented by two connected dotted blue arrows on the attractor landscape (left). The 
second step ii  is to identify the boundary of the basin from an undesired state α converging to an undesired 
attractor where the convergence and the boundary are represented by the blue dotted arrow and the thick arc of 
a dotted circle in top left. The boundary consists of those states of having a minimum Hamming distance from 
α. Bottom left shows that a boundary state might not be a terminal state. The last step iii  is to determine a 
boundary state to which α is to be driven and then a minimum control target set is determined, where all the 
leftward arrows denote driving α (0, 0, 0, 0, 1, 0, 0) to the boundary state (0, 0, 1, 0, 1, 0, 0) and thereby {C = 0} 
becomes the minimum control target set (bottom right). (b) The overall flow of the three steps is summarized. 
The first step i  begins to divide the model (b1) into symmetric nodes F and G (b2) and a subnetwork of the 
remaining five nodes (b3). The topological and algebraic structures (B, C and E in purple) provide conditions 
for terminal states (b4), which are used to identify the basin of the reduced attractor β′ (A, B, C, D, E) = (1, 0, 1, 
1, 1) in the subnetwork (b5). Concatenation of each basin state of β′ and all possible states of (F, G) results in the 
exact basin of β. The basin of β′ is decomposed into two collections b6 and b7 for ii  and iii . See Results, 
Supplementary Figs 1–3 and Methods for details.
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state (A, B, C, D, E, F, G) = (0, 0, 1, 0, 1, 0, 0) and α (0, 0, 0, 0, 1, 0, 0) is equal to 1 and therefore (0, 0, 1, 0, 1, 0, 0) 
is a boundary state, where {C = 0} is the minimum control target set (third step iii  in Fig. 1a).

Each of the three steps ( i , ii  and ii ) can be summarized as in Fig. 1b: the first step requires b1 to b5 and the 
other steps requires b5 to b7. The first step begins to find a node (denoted by O) with no outgoing link (node G in 
b2 of Fig. 1b), which implies that O has no influence when identifying basin states in our framework. As a result, 
for each basin state S at the ℓth layer, there is a basin state at the ℓth layer which is equal to S except for the value of 
Ο. So, Ο is called a “symmetric node” of mean value 0.5 in the basin (Supplementary Figs 1–2). When identifying 
basin states, no influence of the symmetric node let us remove node O from the original network to repeat the 
process for a new symmetric node (node F in b2 of Fig. 1b) until there is no more symmetric node in the subnet-
work. As in b2 and b3 in Fig. 1b, the original network is divided into two symmetric nodes (F and G) and a sub-
network without any symmetric node, respectively, where we refer to the subnetwork b3 as a “non-symmetric 
network”. The reduced attractor state of the non-symmetric network is the state obtained by removing all sym-
metric nodes from the desired attractor state, and the basin of the reduced attractor is referred to as “reduced 
basin”. Note that concatenating the values (0 or 1) of symmetric nodes and reduced basin states provides the exact 
basin. To reduce the computational time complexity when hierarchically calculating reduced basin states, we find 
sufficient conditions for terminal basin states. For instance, the B’s value in a given state S at the ℓth layer deter-
mines the unique value of Cℓ+1 in a solution candidate state at the (ℓ + 1)th layer and the Cℓ+1’s unique value is an 
input to the E’s value in S at the ℓth layer (b3 of Fig. 1b), which implies that the B’s value in each basin state S must 
be an input to the E’s value in S. So, the algebraic structure among B, C and E gives an algebraic relation between 
two values of B and E in S. If S is not terminal, this relation must hold, where the condition in the contrapositive 
becomes a sufficient condition for S to be terminal (b4 of Fig. 1b and Supplementary Fig. 1). See “Sufficient con-
ditions for terminal basin states and classifications of update rules” in the Methods section for details. By concat-
enating the values (0 or 1) of symmetric nodes (b2 of Fig. 1b) and the reduced basin states of the non-symmetric 
subnetwork (b5 of Fig. 1b), we can identify the basin of the desired attractor of the original network ( i  in Fig. 1b 
and Supplementary Fig. 2). Identification process of an exact basin is illustrated with an example network in 
Supplementary Fig. 3. The second and third steps begin to divide nodes of the non-symmetric network into three 
parts depending on the reduced basin (b5 in Fig. 1b): symmetric nodes of mean value 0.5, nodes of fixed values, 
and nodes of unfixed values in the reduced basin. For instance, in the case of the non-symmetric network b3, the 
reduced basin in Supplementary Fig. 1 gives no symmetric node, node C of a fixed value 1 (b6 in Fig. 1b) and the 
other nodes of no fixed values (b7 in Fig. 1b). So, every boundary state (A, B, C, D, E, F, G) from α (0, 0, 0, 0, 1, 0, 
0) has C = 1 as well as (F, G) = (0, 0). Therefore comparing α and the states of (A, B, D, E) in each reduced basin 
state (Supplementary Fig. 1) provides mHD = 1, the boundary {(A, B, C, D, E, F, G) = (0, 0, 1, 0, 1, 0, 0)} and a 
minimum control set {C = 1} ( ii  and iii  in Fig. 1b and Supplementary Fig. 1).

Application of BRc to a biomolecular network and analysis of the distribution of its average 
mHD. To show the details of BRC, we applied it to a biomolecular network of appropriate size, the reduced 
colitis-associated colon cancer (CACC) network of 21 nodes14 (Fig. 2a). This network is to be simply called 
“CACC21” and its state update logics are provided in Supplementary Data 1.

CACC21 is divided into the set of four symmetric nodes shown in the light blue area in Fig. 2a and the sub-
network of 17 non-symmetric nodes shown in the light gray area in Fig. 2a by using the CACC21 topology. The 
symmetric nodes of mean value 0.5 are identified hierarchically as shown in Fig. 1: Proliferation is the unique 
symmetric node in CACC21. P21 and CyclinD1 are symmetric in CACC21 without Proliferation. Bcatenin is 
symmetric in CACC21 without Proliferation, P21 and CyclinD1. There is no symmetric node in CACC21 without 
Proliferation, P21, CyclinD1 and Bcatenin. The subnetwork (top right of Fig. 2a) has a reduced attractor (θ1) com-
posed of 17 non-symmetric nodes with their values in θ. As illustrated in Fig. 1, sufficient conditions for terminal 
basin states are derived to efficiently identify the basin of θ1 of the subnetwork, which will be then used to identify 
the basin of θ of the original network by concatenating the values of four symmetric nodes and each state of the 
basin of θ1 (Supplementary Fig. 4).

A basin state of θ can be decomposed as in in Fig. 2b: sub-states of symmetric nodes (“Symmetric”), nodes of 
fixed state values (“Fixed”) and the other nodes of unfixed values (“Unfixed”), where only the last two sub-states 
are used to identify control targets as in Fig. 1b (Supplementary Fig. 5).

CACC21 has two undesired attractors (state value 1 of Proliferation) and six desired attractors (state value 0 of 
Proliferation) in the state space. The average mHD from any state converging to one of the two undesired attrac-
tors to the basin boundary of one of the six desired attractors is presented in Fig. 2c. As expected, the average 
mHD decreases as the basin size of the desired attractor increases (Supplementary Data 1).

BRC identifies therapeutic targets for temporary perturbation of a biomolecular network by 
identifying its exact basin. CACC network originally consists of 70 nodes14. To represent the condition 
for a premalignant intestinal epithelial cell (IEC) in pro-tumor microenvironments, we fixed the values of DC and 
APC nodes to ON state14 (green diamonds in Fig. 3a). As a result, the states of 21 nodes are fixed and annotated 
as unperturbed nodes in Fig. 3a (dotted circles), and the remaining network consists of 49 nodes which are anno-
tated as perturbed nodes in Fig. 3a (solid circles). We refer to the remaining subnetwork as “CACC49 network” or 
simply “CACC49” (Supplementary Data 2) which contains two phenotypic nodes, Apoptosis and Proliferation. 
We confirm that the dynamics of CACC49 can represent the growth of premalignant IECs14 (Supplementary 
Data 2) since the activation of Apoptosis was blocked and the activation of Proliferation was significantly 
increased whereas it did not reach its full activation.

From Monte-Carlo simulation, we found out 16 attractors (Supplementary Data 2). Two attractors have the 
constantly activated Proliferation node, which can be considered as undesired attractors (cancerous attractors) 
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and so states converging to one of these two undesired attractors are considered undesired states (precancerous 
states). In addition, three attractors have the constantly inactivated Proliferation node (three desired attractors) 
and then states converging to one of these three desired attractors are considered desired states which are approx-
imately 0.03994% of states in the state space. 10,000 randomly selected undesired states were used to identify 
boundary states.

Using our algorithm for identifying a basin, we found that desired states are 0.038409% out of all possible 
states. To drive the network state from an undesired state onto the boundary of the basin of a desired attractor 
by one-time temporary perturbation, we need to identify the boundary states that can be used to further find 
out control target sets and the mHD to the boundary, where the average number of control target sets is 5.2476 
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Figure 2. BRC of a biomolecular network and the distribution of its average mHD. (a) The overall process to 
identify all the desired basin states of a reduced colitis-associated colon cancer network of 21 nodes (referred 
to as “CACC21”). Arrows and bar-headed lines in CACC21 represent activation and inhibition, respectively. 
Symbol θ denotes a desired attractor with Proliferation of value 0, which is given in Supplementary Data 1 
and Fig. 4. In upper right, CACC21 is divided into a subnetwork and four symmetric nodes of mean value 
0.5 (cyan circles), where state θ1 of the subnetwork indicates the reduced attractor state of θ (Supplementary 
Fig. 4). The concatenation of the four symmetric nodes and each basin state of the subnetwork are used to 
identify the exact basin of θ (dotted arrow in bottom right), which is explained in Supplementary Fig. 4. (b) 
Basin state decomposition to identify control targets. Each basin state is decomposed into three sub-states of 
“Fixed” (cyan), “Unfixed” (orange) and “Symmetric” (red, green) nodes where “Symmetric” nodes are obtained 
from the structure of CACC21 and the other nodes are obtained from the reduced basin of θ1. Only “Fixed” 
and “Unfixed” nodes are used to identify control targets (two arrows on the right side), which is explained in 
Supplementary Fig. 5. (c) Decrease of average mHD with increase in basin size. CACC21 has two undesired 
attractors having the state value 1 for Proliferation (Supplementary Data 1). The undesired states sets 1 and 2 
denote the sets of states converging to each of the undesired attractors. The letters “r” and “p” denote Pearson’s 
correlation coefficient and P value, respectively. See Supplementary Data 1 for details.
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Figure 3. Application of BRC to the CACC49 network having a relatively small basin of the desired attractor. 
(a) CACC49 Boolean network with the probability of each node being a control target. Arrows and bar-headed 
lines represent activation and inhibition, respectively. Nodes DC and APC have mutated ON state (value 1), 
leading to fixed state values of the white nodes (dotted circles). Nodes with solid circles denote the candidate 
control targets. 10,000,000 randomly selected initial states are used to find out undesired attractors with 
constantly activated Proliferation (value 1) and desired attractors with constantly inactivated Proliferation 
(value 0), which are given in Supplementary Data 2. The darker red color of a node denotes a higher probability 
of being contained in control target sets given 10,000 randomly selected undesired states. (b) Sufficiently many 
basin states in relatively small size of a desired basin. Using the 10,000,000 randomly selected initial states, 
three desired attractors with constantly inactivated Proliferation are found (Supplementary Data 2). The size 
of desired basin states is exactly 0.038409% (21,622,344,760,959 states). (c) Distributions of the numbers of 
control target sets and mHD. Symbol “>30” in the top panel indicates that the number of control target sets is 
greater than 30. The average number of control target sets is 5.2476 (standard deviation 5.7703) and the average 
mHD is 4.7426 (standard deviation 1.5885). (d) Nodes enriched in control target sets. The activity levels range 
from 0 (inhibition) to 1 (activation). The first, second, third and last panels denote the activity level percentages 
of each node in 10,000 randomly selected undesired states, the desired attractors’ states, the control target sets 
and the desired basin states, respectively. The heights of boxes with red outlines in the four panels denote the 
activity level percentages of MAC, TNFA, TNFR, NFKB, AKT and IKK (darker red colors in a) being contained 
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(standard deviation of 5.7703) and the average mHD is 4.7426 (standard deviation of 1.5885) as shown in Fig. 3c. 
Even if the relative basin size is extremely small as in Fig. 3b, the actual number of desired states is not much 
small (21,622,344,760,959 desired states), which might, in part, explain why the average mHD is not so large. The 
distribution of average mHD is theoretically and computationally obtained in Supplementary Figs 6–8, where we 
showed that the average and normalized average mHDs decrease as the network size increases but the relative 
size of a basin is fixed. In addition, we demonstrated that the mHD decreases if basin states are farther apart from 
each other in Supplementary Fig. 8.

From BRC point of view, each node in Fig. 3a is colored according to the relative frequency of inclusion of 
the node in control target sets, referred to as “control target probability” where a darker red color represents a 
higher control target probability. Activity levels of each node in the 10,000 randomly selected undesired states are 
uniformly distributed as in the first panel of Fig. 3d except for CTL and IFNG of the activity level 0 (first panel 
of Fig. 3d). The update rules for CTL and IFNG (CTL(t + 1) = IFNG(t) and IFNG(t + 1) = CTL(t)) and the fixed 
activity level 0 of CTL and IFNG in the three desired attractors (second panel of Fig. 3d and Supplementary 
Data 2) determine the fixed activity level of CTL and IFNG. So, CTL and IFNG become “fixed nodes”.

We found that eight nodes (i.e. APOPTOSIS, BCATENIN, CTL, CYCLIND1, IFNG, PROLIFERATION, 
SMAD7 and SMASE) are not included in control target nodes (third panel of Fig. 3d) since CTL and IFNG 
are fixed nodes and the other nodes are symmetric nodes of mean value of 0.5 (Fig. 3a and the fourth panel of 
Fig. 3d). We also found that six nodes (AKT, IKK, MAC, NFKB, TNFA and TNFR) are enriched in the control 
target sets (Fig. 3a and the third panel of Fig. 3d), where the inhibitory pattern is similar to that in the basin of 
the desired attractors (fourth panel of Fig. 3d). In addition, the six nodes showed lowest activities in the basin of 
the desired attractors in contrast to the undesired states (first panel of Fig. 3d) except the fixed nodes (CTL and 
IFNG). These results may indicate that the six nodes are essential for maintaining cancer progression, and so inhi-
bition of them can result in cancer regression. The Akt signaling pathway is a well-known oncogenic pathway dys-
regulated in most colon cancer15 and inhibition of this pathway can prevent tumorigenesis of CAC16. IκB kinase 
(IKK) and Nuclear factor-κB (NF-κB) transcription factor are involved in the IKK/NF-κB signaling pathway 
linking inflammation and tumorigenesis of CAC17,18. TNF-α can augment the IKK/NF-κB signaling pathway, so 
blocking TNF-α and its receptor can reduce CAC19. Lastly, it remains as a future study to experimentally validate 
whether the activity of Mac1+ cells is critical to regulate CAC.

BRc can reveal therapeutic targets for temporary perturbation of a biomolecular network 
without identifying its exact basin in the case of a relatively large basin. In case the basin of a 
desired attractor is large enough such that it covers most of the state space, BRC can be applied without identi-
fying the exact basin of the desired attractor. This is illustrated by a Boolean network model on survival of com-
petent cytotoxic T lymphocytes in T cell large granular lymphocyte (T-LGL) leukemia20,21. This network consists 
of 60 nodes including proteins, mRNAs, and small molecules involved in T-LGL survival signaling pathways, 
together with six inputs (CD45, IL15, PDGF, Stimuli, Stimuli2 and TAX; dotted rectangles in Fig. 4a) and three 
outputs (Cytoskeleton signaling, Proliferation and Apoptosis). We refer to this model as “T-cell54” (Fig. 4a and 
Supplementary Data 3).

To reflect the condition for signaling abnormalities in T-LGL leukemia, we fixed the values of input nodes for 
Stimuli, IL15 and PDGF to ON state; and CD45, Stimuli2 and TAX to OFF state21. From Monte-Carlo simulation, 
we found out four attractors in which the values of two outputs Cytoskeleton signaling and Proliferation are 1 and 
0, respectively. The other output Apoptosis has value 0 in two (“undesired attractors”) out of four attractors and 
value 1 in the other two attractors (“desired attractors”), where the total size of the basins of the desired attractors 
is approximately 99.53% (Fig. 4b and Supplementary Data 3).

Since the desired basins occupy most of the state space, every undesired state is expected to be located very 
close to the desired basins, which implies that perturbation of only few nodes at each undesired state might drive 
the undesired state onto the boundary of the desired basins. Except the inputs, the outputs, the conceptual node 
P2 and the previously identified 19 targets20 (dotted circles in Fig. 4a), the remaining 31 nodes (solid circles in 
Fig. 4a) were perturbed to examine whether such perturbation can actually drive the undesired state onto the 
boundary of a desired basin.

We identified boundary states from each of 100,000 random undesired states. As a result, we can find out 
control target sets and mHDs to the boundary of the two desired basins. The average number of control target 
sets is 3.3824 (standard deviation of 1.6723, upper panel of Fig. 4c). As expected, 105 random undesired states are 
located very close to the boundary since 97.35% of all the undesired states are located with HD 1 to the boundary 
and 100% are situated at having HD 3 at most (lower panel of Fig. 4c).

Each node in Fig. 4a is colored according to the relative frequency of its inclusion in all control target sets 
where a darker red color represents a higher probability of being a control target. TBET, Fas and FasT are highly 
enriched in the control target sets (Fig. 4a), where their activity levels are opposite to those in the 100,000 random 
undesired states (Fig. 4d). Fas and FasT are involved in the signaling pathway for Fas-induced apoptosis22, and 
they were also previously suggested as potential therapeutic targets from the analysis of the ODE model of T-LGL 
network23. We further found that TBET (T box expressed in T cells) can be a candidate for a therapeutic target.

comparison of temporary vs. persistent interventions in controlling a biomolecular network.  
To compare the differential effects of temporary and persistent perturbations7–11, we employed the Boolean 

in control target sets, which are the top 6 control target nodes. The nodes marked with yellow backgrounds 
(APOPTOSIS, BCATENIN, CTL, CYCLIND1, IFNG, PROLIFERATION, SMAD7 and SMASE) indicate that 
they are not control target nodes (denoted by empties in the third panel).
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network model of mitogen-activated protein kinase (MAPK) network24 composed of 53 nodes (Fig. 5a and 
Supplementary Data 4). We fixed the values of EGFR to ON (dotted diamond in Fig. 5a) and all the input nodes to 
OFF (dotted rectangles in Fig. 5a) for the case of urinary bladder cancer with EGFR over-expression24. As a result, 
the state values of 20 nodes are also fixed, which are annotated as unperturbed nodes (dotted circles in Fig. 5a), 
and the remaining network consists of 33 nodes which are annotated as perturbed nodes (solid circles in Fig. 5a). 
We refer to this subnetwork as “MAPK33” (update rules in Supplementary Data 4).

10,000,000 randomly selected initial states converge to one of 12 attractors (Supplementary Data 4). Among 
those, one desired attractor is an attractor with (Apoptosis, Growth_Arrest, Proliferation) = (1, 1, 0), which is located 
in the 5th and 8th columns of Fig. 5b, and one undesired attractor is an attractor with (Apoptosis, Growth_Arrest, 
Proliferation) = (0, 0, 1). An undesired state is the undesired attractor with the values denoted by the color of each node 
(red and green denote values 0 and 1, respectively), which is located in the center of Fig. 5b. A temporary target set for 
BRC is (ERK, P53, P38, AP1, CREB, DUSP1, MEK1_2) = (0, 1, 1, 1, 0, 0, 0) (hexagons on Fig. 5b, left) and a persistent 
target set for persistent perturbation is (BCL2, ERK, FOXO3, P21, P53) = (0, 0, 1, 1, 1) (rectangles in Fig. 5b, right).
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Figure 4. Application of BRC to the T-Cell54 network having a relatively large basin of the desired attractor. 
(a) T-Cell54 Boolean network with the probability of each node being a control target. Arrows and bar-headed 
lines represent activation and inhibition, respectively. Dotted rectangles denote input nodes where three inputs 
(Stimuli, IL15 and PDGF) are fixed to ON state and the remaining three inputs (CD45, Stimuli2 and TAX) 
are fixed to OFF. Dotted circles denote three outputs (Cytoskeleton signaling, Proliferation and Apoptosis), 
conceptual node P2 and known therapeutic target nodes for persistent intervention, which are not considered 
as candidates for temporary intervention targets. The remaining 31 nodes are marked with solid circles. 
10,000,000 randomly selected initial states are used to find out undesired attractors (inactivated Apoptosis) and 
desired attractors (activated Apoptosis), which are given in Supplementary Data 3. The darker red color of a 
node indicates the higher probability of being included in control target sets given 100,000 randomly selected 
undesired states. (b) Sufficiently large size of the desired basin. Using the 10,000,000 randomly selected initial 
states, the total size of the basins of the desired attractors is approximately 99.53% (17,929,730,836,487,400 
states). (c) Distributions of the numbers of control target sets and mHD. The average number of control targets 
is 3.3824 (standard deviation 1.6723). All the undesired states are situated at HD 3 at most and 97.35% of them 
have HD 1 to the desired basins. (d) Nodes enriched in control target sets. The activity levels range from 0 
(inhibition) to 1 (activation). The top and bottom panels denote the activity level percentages of each node in 
the 100,000 randomly selected undesired states and the control target sets, respectively. The heights of boxes 
with red outlines in the two panels denote the activity level percentages of Fas, FasT and TBET (darker red 
colors in a) being contained in control target sets, which are the top 3 control target nodes. Nodes marked with 
yellow background (CTLA4, FYN, LCK, P27 and TCR) indicate non-target nodes (denoted by empties in the 
bottom panel).
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Figure 5. Temporary vs. persistent interventions. (a) MAPK network for urinary bladder cancer with EGFR 
over-expression. Arrows and bar-headed lines represent activation and inhibition, respectively. Dotted 
rectangles denote input nodes of value 0 and a diamond-shaped square denotes over-expressed EGFR of 
value 1. The 20 nodes marked with dotted circles (“unperturbed”) have fixed values. The remaining 33 nodes 
(“perturbed”) are marked with solid circles (Supplementary Data 4). (b) Comparison of temporary vs. persistent 
interventions. The green and red colors of the 33 nodes in the center denote their undesired state values 1 and 
0, respectively. The 5th and 8th columns on the left and right sides denote the desired attractor state, respectively. 
The initial and final of arrows (blue) denote the start and end of perturbations, respectively, where bars on 
the left side denote the end of temporary perturbation. On the left side, the 1st state denotes a boundary state, 
where hexagons denote temporary target nodes and their values. We obtained the 2nd, 3rd, 4th and 5th states by 
substituting the boundary state into the update rules (Supplementary Data 4) as an initial state, where the 5th 
state denotes the desired attractor state. On the right side, the 1st state denotes any state such that the persistent 
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After one-time temporary perturbation of the temporary target set, the undesired state is driven to the bound-
ary state (“1st state” on the left side of Fig. 5b), which converges to the desired attractor without any further per-
turbation. When applying BRC, there is no indirect perturbation of a node. On the other hand, if we persistently 
perturb the persistent target nodes, as usually assumed in most previous studies on complex network control, 
then the other nodes can also be indirectly perturbed and any state converges to the desired attractor through 8 
state transitions in our Boolean simulation (right of Fig. 5b and Methods). In addition, the conventional control 
methods could not guarantee to achieve the control goal, convergence to the desired attractor, if the persistent 
perturbation is interrupted before an initial state converges to the desired attractor. From the simulation results 
with different interruptions during perturbation simulations (Supplementary Fig. 9a), we found that the success 
rate of converging to the desired attractor from random initial states exponentially decreases as the interruption 
occurs at an earlier state transition step. Hence, insufficient duration of persistent perturbation may fail to achieve 
the desired control goal. Intriguingly, in this example, none of the states in the undesired basin could successfully 
be controlled over such insufficient perturbation duration (Supplementary Fig. 9b).

A determining factor for the control target nodes and their perturbation values. Identifying con-
trol target nodes depends on both a desired basin and undesired states. A question then arises as to whether there 
is any particular dependence relationship between these two factors. To answer to this question, we analyzed all the 
nodal values in both undesired and desired basins and found that the difference between nodal values in the two 
basins may provide a clue. We discovered that a larger difference (x-axis in Fig. 6a) tends to result in a higher proba-
bility of the node to be a control target (y-axis in Fig. 6a). Moreover, the sign of the difference (x-axis in Fig. 6b) can 
be used to determine inhibition or activation of the control target (y-axis in Fig. 6b). Together, these results suggest 
that control targets and their mode (i.e. activation or inhibition) of control in BRC can be predicted from the infor-
mation of undesired and desired states without computing the distance from an undesired state to a desired basin.

Discussion
Systems biological investigations primarily focused on unraveling the hidden mechanism of biological phenom-
ena25–38 and they are recently being extended to controlling the dynamic behavior caused by complex regulatory 
networks. Previous studies of controlling complex networks mostly considered persistent perturbation of control 
target elements in the networks. Such persistent perturbation might, however, not be feasible in some cases or bring 
about undesired side effects even if it is feasible. To resolve this issue fundamentally, we proposed in this study a 
different concept of network control, BRC based on temporary perturbation. The basic idea of this control strategy 
is to drive any undesired state to a boundary state of the basin of attraction of a desired attractor using temporary 
perturbation, whereafter the network state converges to the desired attractor without any further intervention. To 
implement BRC, we need to find out the exact basin of attraction to a given desired attractor and the boundary of the 
basin. We have developed general algorithms for these purposes. In case where the size of basin is large enough, BRC 
can be implemented without identifying the exact basin as illustrated in the example of Fig. 4.

Of note BRC can also be used to the case of a desired cyclic attractor by temporarily perturbing the identified 
control target nodes to some fixed state values whereas previous network control strategies using persistent per-
turbation require periodically changing the state values of control target nodes8,10, which is very difficult or mostly 
impossible in many cases. For instance, oscillations emerge in various cellular functions39,40 such as cell cycle, 
DNA damage response with p53, and stress response with NF-kB, and they are all represented by cyclic attractors 
of the underlying molecular networks41,42. In those cases, periodically changing any target molecule is very hard 
and not feasible in practice. On the other hand, BRC requires only to temporarily perturb some target nodes to 
fixed state values such that the network state transits to the boundary of the basin of attraction to the desired 
cyclic attractor. There is another important feature of BRC. Owing to the nature of its transient perturbation, BRC 
preserves the original attractor landscape of a complex network whereas it is often distorted by persistent pertur-
bation7. This means that the desired cyclic attractor might change or even disappear unexpectedly if persistent 
perturbation is applied to the network, but such cases would not happen if we employ BRC. In the case of p53 
regulation, the cellular phenotype of an oscillatory p53 response can be conversely changed to that of a sustained 
p53 response43 and therefore preserving the original attractor landscape is critical to induce a desired phenotype.

We have provided examples of an ecological network44 and an insect social network45 to show the applicability of 
BRC to diverse complex networks. In the ecological network, the ecological community assembly consists of three 
plants species and two pollinators species, and a control target set was found to restore an ecologically desired steady 
state from an undesired state44 (Supplementary Fig. 10). The “control target nodes” found from BRC indicate key 
structural components (or “master regulators”) of information flow in the insect social network composed of paired 
dominant interactions in the social wasp R. marginata where physical interactions play an important role in infor-
mation flow and a primitively eusocial wasp is dominating over the other in paired interactions45 (Supplementary 
Fig. 11). A dominant in a paired interaction usually becomes a subordinate in other paired interaction. Since the 
dominant network consists of a feedforward structure without inhibition of information flow, there exist dominant 
wasps which are not subordinates; and such wasps play roles as “master regulators” with respect to information flow. 

target nodes’ values are fixed (rectangles in red or green) and the other nodes’ values can be 0 or 1 (marked 
with*). Substituting any state in the 1st state into the update rules as an initial state, 9 non-persistent target 
nodes have fixed values at the right next time step, which are marked with circles in red or green at the 2nd state. 
Similarly, substituting any state in the 2nd state into the update rules as an initial state, 12 non-persistent target 
nodes have fixed values at the right next time step, which are marked with circles in red or green at the 3rd state. 
Repeating this process, all nodes have fixed values by substituting any state in the 7th state into the update rules 
as an initial state.
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We showed that the set of master regulators are equal to the set of control target nodes found from BRC without 
constructing the hierarchical structure of the paired interactions (Supplementary Fig. 11).

The number of control targets is critical for application to real systems, and it depends on the size and struc-
ture of the basin of a desired attractor. This number becomes smaller for a larger basin (Fig. 2c). On the other 
hand, if the size of basin is relatively small compared to the size of a network, one may intuitively imagine that a 
larger number of control targets would be needed. However, it is not as shown in Fig. 3 where the average number 
of control targets is about 5 (note that the Hamming distance to the basin is 5) which is very small considering 
that the network consists of 49 nodes (so 249 states in total) and the relative size of the basin is extremely small 
(about 0.0384% of 249). Even if the relative size of basin is extremely small in this case, the number of basin states 
is sufficiently large (above 1011) enough to cover all 104 random undesired states within average HD of 5, which 
might in part explain the counter-intuitive result. To reduce the number of control targets, a union of basins of all 
desired attractors, instead of considering only one desired attractor, can be used for BRC (Supplementary Fig. 8c). 
In this study, we did not consider any preprocessing procedure to reduce the number of control targets before 
applying BRC, and therefore it remains as a further study.

Our deterministic control framework cannot reflect fluctuations in biological systems when identifying tempo-
rary control target sets. Even if an undesired state is driven to a boundary state converging to a desired attractor by 
using the temporary control targets, the boundary state could switch to an undesired state due to the fluctuation. If 
the fluctuation is considered a random process of flipping the state of each node, determining a control target set for 
a boundary state stable to the flipping might be a way to reflect the fluctuation (Supplementary Fig. 12). To reflect 
the fluctuation in the process of identifying control targets, a stochastic control framework should be considered46.

Our discrete control framework might be extended to non-discrete models including ordinary differential equa-
tion (ODE) models if the exact basin of a given attractor could be explicitly identified. We demonstrated the possi-
bility by using an example of a homogeneous system of finite linear differential equations with constant coefficients 

Figure 6. Relation of control target and activity level probabilities with the difference of undesired and desired 
states. (a) Correlation analysis between control target probability and |Vundesired − Vdesired| of each node in CACC21, 
CACC49, T-cell49 and MAPK33 networks (Supplementary Data 1, 2, 3 and 4). Symbol Vundesired (Vdesired) denotes 
the mean value of a node state in all undesired (desired) states, where the undesired and desired states in CACC21, 
CACC49, T-cell49 and MAPK33 are defined in the previous subsections. |Vundesired − Vdesired| denotes the absolute 
value of difference between Vundesired and Vdesired of each node. Pearson’s correlation coefficients (r) and P values (p) 
indicate a strong positive correlation. (b) Relation between zero activity level probability and Vundesired − Vdesired of 
each node in CACC21, CACC49, T-cell49 and MAPK33 networks (Supplementary Data 1, 2, 3 and 4). The zero 
activity level probability of a node denotes the probability that the node’s value is 0 in all the control target sets, 
which tends to increase as Vundesired − Vdesired increases.
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in Supplementary text. In the case that a non-linear ODE model and a desired point attractor state are given, the 
non-linear ODE can be linearized at the desired state and the linearized ODE might provide desired basin states around 
the desired state. Such a linearization might be a starting point to find an approximate basin of the desired attractor.

So far, there has been no study considering minimal one-time temporary intervention for complex net-
work control and no attempt to identify the exact basin of attraction to a desired attractor using the topological 
and algebraic structures of a network. Hence, the presented control strategy and algorithms for identifying the 
exact basin of attraction would be useful for any future studies of controlling complex networks with minimal 
interventions.

Methods
Classifications of nodes. We consider a Boolean network G(V0, E0, F0) with synchronous update rules for its 
state transition where V0, E0 and F0 are the sets of nodes, directed edges between nodes, and update rules for the 
nodes, respectively. Node x is called an “input to y” if there exists an outgoing link from x to y. The outdegree and 
indegree of x are the numbers of outgoing links from x and incoming links to x, respectively, which are denoted by 
outdeg(x) and indeg(x). x is also used to denote the state value of node x. If outdeg(x) = 0, then x is called an “inde-
pendent” node. Let G(V1, E1, F1) denote the subnetwork obtained by removing all independent nodes from G(V0, E0, 
F0). If G(V1, E1, F1) has an independent node, then we remove all independent nodes from G(V1, E1, F1). We repeat 
this removal process until there is no more independent node in subnetwork G(Vη, Eη, Fη) for some positive integer 
η. Independent nodes in G(Vi, Ei, Fi) (0 ≤ i ≤ η − 1) are also called “symmetric” nodes since independent nodes gen-
erate a symmetric structure in the basin of each attractor: Let 

V x x{ , , }n0 1 0
=  and ∈ ≤ ≤{ }x V j n1j

sym
sym0  be the 
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becomes also sufficient conditions for given states at time step t + 1 to be terminal basin states, where “*” denotes 
either 0 or 1. Therefore, (Eq. 2) and (Eq. 3) are sufficient conditions for given states at time step t + 1 to be ter-
minal basin states. The update rules are called “nondeterministic equations” except for “deterministic equation”.

Algorithm for identifying the exact basin of a desired attractor
Step 1. Determine a desired attractor. Let us consider one attractor of interest (e.g. a desired attractor) in the state space 
of a Boolean network G(V0, E0, F0). Let β = [S1, ⋯, Sc] be a desired attractor of length c(c ≥ 1), where Sq(1 ≤ q ≤ c) is a 
state in the state space; substitution of Sp into the update rule as an initial state results in the state Sp+1(1 ≤ p ≤ c − 1) at 
the next time step; substitution of Sc into the update rule as an initial state results in S1 at the next time step.
Step 2. Classify nodes in the network. Nodes are classified into three categories: “symmetric”, “deterministic” 
and “nondeterministic” nodes by following the definitions in the foregoing subsection (Classifications of nodes).
Step 3. Determine the subnetwork without symmetric nodes. Following the removing process of symmetric nodes 
in the foregoing subsection (Classifications of nodes), the desired subnetwork G(Vη, Eη, Fη) can be obtained.
Step 4. Identify the basin of the reduced desired attractor of the subnetwork without symmetric nodes. Let 
β = S S[ , , ]c1 �� ��  be the reduced attractor in the state space of G(Vη, Eη, Fη), where Si

  is obtained from Si (1 ≤ i ≤ c) 
by removing the values of nodes that are not contained in Vη.

 Step 4-1. Classify Boolean update rules for nodes in G(Vη, Eη, Fη). The update rules for nodes in G(Vη, Eη, Fη) 
are classified into three categories: “deterministic equations”, “sufficient conditions for terminal basin states” 
and “nondeterministic equations” by following the definitions in the foregoing subsection (Sufficient condi-
tions for terminal basin states and classifications of update rules).
 Step 4-2. Construct the collection Ωternimal of all terminal basin states converging to β . Using (Eq. 2) and 
(Eq. 3), we can identify the collection of all the terminal basin states.
 Step 4-3. Identify all states converging to each S q c(1 )q ≤ ≤ , the set of which is called the “local basin of Sq

 ” 
and denoted by ( )LB Sq

 . Since local basins have no common state except for S q c(1 )q ≤ ≤ , we can find each 
( )LB Sq  in hierarchical and parallel processing where the first layer consists of Sq.
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where Vdet and Vnondet are defined in the foregoing subsection (Classifications of nodes). The second layer 
consists of solutions

=( ) ( )x x x x v v v v, , , , , , , , , ,det
n
det nondet

n
nondet det

n
det nondet

n
nondet

1 1 1 1det nondet det nondet
   

of the system of Boolean equations

( )v f x x x x n n, , , , , ( 1 ),q det
n
det nondet

n
nondet

det1 1det nondet
  θ= + ≤ ≤θ θ

where =( ) ( )x x v v, , , ,det
n
det det

n
det

1 1det det
 

 is determined by (Eq. 1) with 


x t v i n( 1) (1 )det
i
q

deti
+ = ≤ ≤ . Go 

to Case 3.

Case 3. If there is a basin state in the second layer, then replace Sq
  with each state in the second layer and 

repeat Cases 1 and 2, so that the third layer can be obtained. Repeat this process until all the given states are 
contained in Ωternimal. Then we can finally identify ≤ ≤( )LB S q c(1 )q .

 Step 4-4. Identify the basin of �� ��β = S S[ , , ]c1  in the subnetwork G(Vη, Eη, Fη). The union of local basins 
∪ ≤ ≤

( )LB Sq c q1  is the basin of the reduced attractor β .
Step 5. Identify the exact basin of β = [S1, L, Sc] in G(V0, E0, F0). Let ∈ ≤ ≤{ }x V j n1j

sym
sym0  be the set of sym-

metric nodes. Then each state of the exact basin can be represented as

=( ) ( )x x x x x x v v v v v v, , , , , , , , , , , , , , , , ,sym
n
sym det

n
det nondet

n
nondet sym

n
sym det

n
det nondet

n
nondet

1 1 1 1 1 1sym det nondet sym det nondet
     

where ( )v j n{0, 1} 1j
sym

sym∈ ≤ ≤  and ( ) ( )v v v v LB S, , , , ,det
n
det nondet

n
nondet

q c
q1 1

1det nondet
� � �∪∈

≤ ≤
.

Identification of control targets for BRC
Let β = [S1, ⋯, Sc] be the attractor in the foregoing subsection (Algorithm for identifying the exact basin of a 
desired attractor). Let α be an undesired state converging to an undesired attractor. Let ∪ ≤ ≤

( )LB Sq c q1  be the basin 
of the reduced attractor β  in the state space of G(Vη, Eη, Fη), which are defined in the foregoing subsections.
Step 1. Classify nodes in G(Vη, Eη, Fη) depending on state values in ∪ ≤ ≤ ( )LB Sq c q1 . Let =Vsym ∈ ≤ ≤η{ }x V j n1j

sym
sym  

and { }V x V V j n1fixed j
fixed

sym fixed= ∈ − ≤ ≤η  be the sets of symmetric nodes xi
sym and nodes xj

fixed of fixed values 
in ∪ ≤ ≤ ( )LB Sq c q1 , respectively, where the fixed values are denoted by = ∈x v {0, 1}j

fixed
j
fixed . Let the set of nodes of 
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unfixed values in ( )LB Sq c q1 ∪ ≤ ≤  be denoted by = ∈ −η{V x Vunfixed j
unfixed }V V j n1sym fixed unfixed− ≤ ≤ . Here, “sym-

metric” means that if 
  (x x v v x, , , , , , , ,sym

n
sym fixed

n
fixed unfixed

1 1 1sym fixed
∪∈

≤ ≤
) ( )x LB Sn

unfixed

q c
q

1unfixed
, then

� � � �∪− − ∈ .
≤ ≤

( ) ( )x x v v x x LB S1 , , 1 , , , , , ,sym
n
sym fixed

n
fixed unfixed

n
unfixed

q c
q1 1 1

1
sym fixed unfixed

Step 2. Represent α depending on the classifications. Using the notations defined in Step 1, the undesired state α 
can be represented as

  ( ), , , , , , , ,sym
n
sym fixed

n
fixed unfixed

n
unfixed

1 1 1sym fixed unfixed
α α α α α α α= .

Step 3. Calculate the minimum Hamming distance (mHD) from α to ∪ ≤ ≤ ( )LB Sq c q1 .
Let α α ρ=( )( ) ( )HD v v, , , , ,fixed

n
fixed fixed

n
fixed

fixed1 1fixed fixed
 

 be the Hamming distance between the two states 

( ), ,fixed
n
fixed

1 fixed
α α  and 

( )v v, ,fixed
n
fixed

1 fixed
 such that v1p

fixed
p
fixed

i i
α = −  for some pi ∈ {1, ⋯, nfixed}(1 ≤ i ≤ ρfixed). 

Let 
 ( )( ) ( )HD v v, , , , ,unfixed

n
unfixed unfixed

n
unfixed

unfixed1 1unfixed unfixed
α α ρ=  be the minimum Hamming distance between 

two vectors of nodes of unfixed values in α and ( )LB Sq c q1∪ ≤ ≤  such that

 α α= − = −






 ∈ρρ ρ

v v q q I1 , , 1 for , , ,q
unfixed

q
unfixed

q
unfixed

q
unfixed

1
unfixed unfixed unfixed1 1

where I is an index set contained in {1, ⋯, nunfixed}. Therefore, mHD between α and ∪ ≤ ≤
( )LB Sq c q1  is ρfixed + ρunfixed.

Step 4. Identify control target sets driving α to the boundary of the exact basin. Let |I| denote the number of ele-
ments of I. Then there exist |I| control target sets

  

α α

ρ ρ









= − = −

≤ ≤ ≤ ≤















 ∈ .ρρ ρ

x x x x
x q

i j
q q I, , , , ,

1 , 1 ,

1 , 1
, , ,p

fixed
p
fixed

q
unfixed

q
unfixed p

fixed
p
fixed

j
unfixed

q
unfixed

fixed unfixed
1

fixed unfixed

i i j

unfixed1 1

Boolean simulations to estimate the attractor landscape of a Boolean network. We performed 
all Boolean simulations using MATLAB. To find out attractor states of large-scale Boolean networks (CACC49, 
T-cell54, and MAPK33), we estimated the attractor landscape of each network using a Monte Carlo approach. 
Each of 10,000,000 randomly selected states was substituted in a deterministic Boolean update rule as an initial 
state and then the state of each node in a network was synchronously updated following the logical rule. Then we 
obtained attractor states to which the initial states converge and the approximated ratio of each basin of attraction.

Boolean simulations to compare temporary versus persistent interventions. One-time tempo-
rary perturbation of BRC (Fig. 5b, left) was implemented by flipping the state of a node in a BRC set to the value 
of the node in the BRC set and tracking the state trajectory from the perturbed state to the desired attractor state. 
On the other hand, persistent perturbation of conventional control methods (Fig. 5b, right) was implemented by 
persistently fixing the state of each node in a conventional control set to the value of the node (directly fixed val-
ues) in the control set. The nodes and their directly fixed values are placed in the “1st state” in the right of Fig. 5b. 
Substituting the directly fixed values of all the nodes into the Boolean update rules at time step t results in some 
other fixed node values (indirectly fixed values) at time step t + 1, where the nodes of fixed values are placed in the 
“2nd state”. This process was repeated up to the “8th state”, which is the desired attractor state.

Data Availability
All codes are available from the authors upon request.
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