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Abstract
Targeted drugs aim to treat cancer by directly inhibiting oncogene activity or oncogenic pathways, but drug resistance
frequently emerges. Due to the intricate dynamics of cancer signaling networks, which contain complex feedback
regulations, cancer cells can rewire these networks to adapt to and counter the cytotoxic effects of a drug, thereby limiting
the efficacy of targeted therapies. To identify a combinatorial drug target that can overcome such a limitation, we developed
a Boolean network simulation and analysis framework and applied this approach to a large-scale signaling network of
colorectal cancer with integrated genomic information. We discovered Src as a critical combination drug target that can
overcome the adaptive resistance to the targeted inhibition of mitogen-activated protein kinase pathway by blocking the
essential feedback regulation responsible for resistance. The proposed framework is generic and can be widely used to
identify drug targets that can overcome adaptive resistance to targeted therapies.

Introduction

Although targeted cancer therapy can rapidly reduce tumor
burden, persistent clinical responses in patients are rare [1].
As treatment continues, the efficacy of targeted therapy in
cancer becomes limited by drug resistance. Therefore,
understanding the mechanisms that cause drug resistance is
an important challenge to improving cancer treatment.
Cellular homeostasis confers drug resistance to cancer cells
[2, 3]. Cellular homeostasis is maintained by interacting
cellular molecules that form a complex network, which has
been evolutionarily designed to be robust to external per-
turbations, including drugs that affect the molecules in the

network. This hardwired homeostatic mechanism, which is
intrinsic to the intracellular molecular regulatory network,
enables cells to maintain biological functions under sub-
optimal conditions. Unfortunately, for cancer patients, this
homeostatic mechanism also limits the therapeutic effects of
treatment. For example, after the treatment with a targeted
drug that alters phosphorylation-mediated cellular signaling,
dynamic reprogramming of the kinome occurs in the cancer
signaling network to adapt and counteract the drug’s effect;
consequently, cancer cells withstand the drug treatment
[4, 5]. This mechanism of drug resistance, which is hard to
predict, is referred as “adaptive resistance” [6].

Examples of adaptive resistance involve drugs targeting
various kinases in the mitogen-activated protein kinase
(MAPK) cascade: RAS → RAF → MEK → ERK. The drug
vemurafenib (PLX4032) is an FDA-approved BRAF inhi-
bitor (BRAFi) that is used to treat patients harboring the
mutant BRAF V600E. Vemurafenib was effective as a
monotherapy in BRAF-mutant melanoma, producing a
response rate of 80%; whereas it has failed as a mono-
therapy in BRAF-mutant colorectal cancer (CRC), produ-
cing response rate less than 5% [7]. When the BRAF-
mutant CRC was treated with BRAFi, negative feedback
from downstream ERK to the upstream receptor EGFR was
alleviated [8, 9]. As a result, adaptive resistance emerged
against BRAFi through continuous activation of the MAPK
signaling pathway by EGFR. In the case of KRAS-mutant

These authors contributed equally: Sang-Min Park,
Chae Young Hwang

* Kwang-Hyun Cho
ckh@kaist.ac.kr

1 Laboratory for Systems Biology and Bio-inspired Engineering,
Department of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141,
Republic of Korea

Supplementary information The online version of this article (https://
doi.org/10.1038/s41388-020-1255-y) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-020-1255-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-020-1255-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-020-1255-y&domain=pdf
http://orcid.org/0000-0002-7380-7142
http://orcid.org/0000-0002-7380-7142
http://orcid.org/0000-0002-7380-7142
http://orcid.org/0000-0002-7380-7142
http://orcid.org/0000-0002-7380-7142
mailto:ckh@kaist.ac.kr
https://doi.org/10.1038/s41388-020-1255-y
https://doi.org/10.1038/s41388-020-1255-y


CRC, treatment with an MEK inhibitor (MEKi) induces
adaptive resistance that activates the MAPK signaling
pathway through BRAF and CRAF [10].

Systems analysis of network dynamics using quantitative
mathematical models is an effective method to evaluate and
predict the emergence of resistance mechanisms in the
complicatedly intertwined signaling network [11–14]. For
analyzing a large-scale network, some computational stu-
dies have reconstructed and analyzed cancer signaling net-
works using Boolean models [15, 16]. Signaling molecules
are mapped to nodes of a network and the state of a node
denotes the activation level of a corresponding molecule.
The Boolean model represents the state value of a node in a
discrete way (“ON” represented by the value 1 for an active
state or “OFF” represented by the value 0 for an inactive
state) and represents the dynamics of a node as a logical
relationship between nodes. Therefore, the Boolean model
is computationally tractable and avoids the problem of
parameter estimation, which is necessary for continuous
models with ordinary differential equations (ODEs) [17–
19]. The effect of drug perturbation for investigating drug
responses in Boolean network models is generally imple-
mented by fixing the state value of target node(s) to OFF.
Consequently, a signaling pathway can be fully blocked by
a single drug targeting one of nodes in the pathway, and
adaptive resistance in the pathway cannot be captured by
this approach. Therefore, partially inhibited states are
required to appropriately represent the drug effect in the
simulation and predict mechanisms of adaptive resistance.

Here, we developed a simulation framework that repre-
sents drug inhibition as a ratio using a probabilistic Boolean
model, and we showed that this approach can capture the
adaptive changes that result from changes in feedback
regulation after drug treatment. We also reconstructed a
comprehensive large-scale signaling network of CRC that
encompasses frequently mutated oncogenic pathways with
feedback loops and crosstalk paths. By integrating genomic
information within the network, we analyzed cell line-
specific dynamics in response to targeted inhibitors. To
identify combination targets for overcoming adaptive
resistance, we evaluated the dynamical change of all the
nodes after drug treatment and their feedback composition
with respect to the original drug target. We found that Src is
an essential target mediating adaptive resistance to multiple
drugs targeting the MAPK pathway. Src reactivated the
targeted pathway and mediated activation of the compen-
satory pathway, thereby bypassing the blocked targeted
pathway. We experimentally validated that combination
treatment of Src inhibitor (SRCi) is effective with MEKi in
CRC cell lines (HCT116 and SW620) with mutant KRAS,
and with BRAFi or pan-RAF inhibitor (RAFi) in the CRC
cell line HT29 with mutant BRAF. Moreover, we confirmed
that the combination of SRCi with MAPK pathway

inhibitors is effective in lung and breast cancer cells having
KRAS or BRAF mutation. The combination of SRCi and
phosphatidylinositol-3 kinase (PI3K) pathway inhibitors
was also effective in PI3K-mutant CRC cells. Together, we
conclude that combinatorial targeting of Src may be effec-
tive in preventing adaptive drug resistance in various cancer
cells. The proposed simulation framework is generic, so it
can be used to identify combinatorial targets for overcoming
adaptive resistance of various anticancer drugs.

Results

Development of a Boolean simulation framework
to analyze adaptive resistance

We sought to find molecular targets that could inhibit
adaptive resistance to drugs in CRC. Treatment of CRC
with MAPK signaling pathway inhibitors, such as BRAFi
or MEKi, induces adaptive resistance by reactivation of
MAPK signaling [8–10]. To establish that this phenomenon
occurred in a CRC cell line, we investigated whether
BRAFi or MEKi induce the reactivation of their down-
stream molecule, ERK, in HCT116 and HT29 cells. In the
HCT116 cells, treatment with U0126 (MEKi) initially (1 h)
reduced the amount of phosphorylated ERK (pERK) levels
then pERK amounts recovered by 48 h (Fig. 1a, top).
Similarly, in the HT29 cells, treatment with the vemurafenib
(BRAFi) initially reduced pERK and then pERK recovered
(Fig. 1a, bottom). To illustrate this phenomenon within a
network, we created a toy model of the signaling network
with a negative feedback loop (NFL). The model network
consists of three cascading nodes that convey signals from
upstream node A to downstream nodes B and C and an NFL
from node C to node A (Fig. 1b (i)). The activity level of
output node C indicates the pathway activity. Initially, when
node B is targeted by an inhibitor, the drug target node is
inhibited and pathway signaling is blocked (Fig. 1b (ii)).
However, the reduced activity of downstream node C
alleviates its negative feedback to upstream node A and the
activated upstream signaling can overcome the inhibitory
effect of the drug at node B, enabling the network to adapt
and signal transduction to recover (Fig. 1b (iii)). This
adaptive change in the network reactivates node B and
restores signal transmission through the network in the
presence of the inhibitory drug targeting node B (Fig. 1b
(iv)). Thus, the NFL enabled the pathway to resist inhibition
by drug treatment.

To systematically investigate the effect of feedback
regulation using Boolean modeling, we simulated drug
treatment in models of the three-node signaling network
with or without an NFL (Fig. 1c and Supplementary Table
1). Using a deterministic Boolean network (DBN), the
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targeted node (node B) is fixed in the OFF state. The
deterministic drug simulation resulted in both networks
producing the same outcome in the presence of the drug—

complete pathway inhibition (Fig. 1d). Furthermore, with
the DBN, single and combinatorial drug perturbations to the
NFL-containing network produced the same complete
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inhibition of the pathway (Fig. 1d), which is not reflective
of the experimentally identified effectiveness of this com-
bination in inhibiting the MAPK pathway [10, 20]. Thus,
the conventional approach with deterministic drug simula-
tion based on a binary response cannot effectively represent
adaptive resistance that arises from an NFL and thus cannot
identify combinatorial targets.

To overcome this limitation, we developed a Boolean
simulation framework, which we call probabilistic Boolean
modeling with a probabilistic Boolean network (PBN), for
the analysis of adaptive resistance in a signaling network by
incorporating an inhibition ratio for the drug target nodes.
The incorporation of an inhibition ratio is more reflective of
the in vivo situation where a drug is unlikely to block 100%
of a protein’s function. In contrast to a DBN in which the
state of a node in the network is updated by one logic during
the simulation, a PBN incorporates uncertainty such that the
state of a node in the PBN is stochastically updated
according to one of several logics [21]. In our probabilistic
Boolean modeling, a drug target node has two Boolean
functions, the original and inhibitory logics (Supplementary
Fig. 1). We chose the inhibitory logic for the drug target
node with a probability of the inhibition ratio. As a result,
the state value of the drug target node was probabilistically
inhibited according to the inhibition ratio in the range from
0 to 1. If a drug target node was inhibited with the ratio of
30%, the state of the target node was fixed to OFF in 30%
simulation steps following the inhibitory logic and was
continuously updated following the original logic of the
node in the remaining simulation steps (70%).

By the probabilistic drug simulation, we captured the
emergence of drug resistance in an NFL-containing network
compared the absence of resistance in simple cascade (Fig.
1e, left panel). The simple cascade exhibited an inhibition
of pathway activity linearly correlated with the inhibition
ratio without any changes in the activity of the node
upstream of the drug target node; the NFL network

exhibited an increase in the activity of the node upstream of
the drug target node and the block of pathway activity was
slowly achieved with the inhibition ratio (Fig. 1e, middle
panel). Inhibition of the NFL network developed at higher
amount of the inhibition ratio than that required to inhibit
the simple cascade. By combinatorial drug targeting the
node A, inhibition of the NFL network occurred at lower
amounts of inhibition ratio than those required by the single
drug, indicating more effective inhibition of pathway
activity by the combinatorial targeting of node A and node
B. The area under curve (AUC) for the pathway inhibition
of the PBN clearly demonstrated the resistance of the NFL
network and the enhanced effect of drug combination
(Fig. 1e, right panel), compared with those results of the
DBN (Fig. 1d, bottom). This analysis demonstrated that our
simulation framework using PBN can represent NFL-
mediated adaptive resistance and thus can identify combi-
natorial targets to overcome resistance mediated by feed-
back regulation.

We tested our simulation framework in a model of the
more complicated toy model with interlinked bypass path-
ways, including multiple negative and positive feedback
loops (Fig. 1f, left panel and Supplementary Table 1). Node
D in this model can contribute to pathway activity through
multiple bypass routes. Intriguingly, node D, rather than A,
was the most effective combinatorial target with node B in
this model (Fig. 1f, middle and right panel). This result was
also demonstrated in the toy model with different logical
function (Supplementary Fig. 2). Considering that node D is
outside the pathway from A–B–C pathway initially, this
result suggested that combination targets may be outside the
initially targeted pathway and thus would be difficult to
predict without a computational approach. It is noteworthy
that the results of deterministic drug simulation (at 100%
inhibition ratio) could not predict effects of single and
combination drugs, as well as of different combinatorial
targets.

Reconstruction of the large-scale signaling network
for CRC

Because the signaling network common in many cancer
cells contains numerous feedback regulations and crosstalk
among multiple modular pathways [3], the mechanism of
adaptive resistance to drugs may not be intuitive or readily
predictable. To systematically analyze mechanism of the
adaptive resistance to drugs in CRC, we reconstructed a
Boolean model for a large-scale comprehensive signaling
network of CRC based on the published literature and
information in such databases as Pathway Interaction
Database and Kyoto Encyclopedia of Genes and Genomes
(KEGG) [22, 23]. Within the signaling pathways, we inte-
grated frequently mutated components associated with

Fig. 1 Simulation framework to analyze the adaptive resistance to
drugs. a HCT116 or HT29 cells were treated with MEKi (U0126,
1 μM) or BRAFi (vemurafenib, 1 μM). The phosphorylation ERK was
monitored for 1 and 48 h by immunoblotting with antibodies recog-
nizing the indicated proteins or phosphoproteins. b Illustrative toy
model of adaptive resistance in a signaling pathway with negative
feedback. The pathway activity was assumed to be the activity of
downstream output node C. Each stage of the plotted pathway activity
(below) corresponds to a state of the pathway (i, ii, iii, or iv).
c Boolean network models of a signaling pathway, including three
nodes with (NFL) or without negative feedback (simple cascade).
d The results obtained by deterministic drug simulation of the response
to one or two drugs. e The results obtained by the probabilistic drug
simulation of the response to one or two drugs. Simulated node
activity in c, d, and e is represented by the blue to red scale below in
c. f The Boolean network model of the signaling pathway with
interlinked bypass pathways and the results obtained by the prob-
abilistic drug simulation.
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colorectal tumorigenesis [24, 25], including APC or
β-catenin mutations in the WNT pathway, BRAF or KRAS
mutations in the MAPK pathway, PI3Kα mutations in the
PI3K/AKT pathway, SMAD4 mutations in the TGFβ
pathway, p53 mutations in the DNA damage pathway, and
we included crosstalk links between pathways. We also
included pathways that represented the outcome of the drug
response: p38/JNK pathway, JAK/STAT pathway, cell
cycle pathway, and apoptosis pathway. The entire signaling
network of CRC consists of 95 nodes and 341 links (Fig. 2a
and Supplementary Data 1 for logic equations). Four input
nodes (EGF, DNA damage, WNT, and TGFβ) stimulate the
corresponding signaling pathways of the network model.
Two output nodes (proliferation and apoptosis) represent
the phenotypes produced by the network model.

We note that most isoforms are represented as a single
node in this network, for instance, both ERK1 and ERK2
are incorporated as an ERK node, except RAF that different
roles of its isoforms are demonstrated experimentally as
critical in adaptive resistance. CRAF was revealed to be
activated for the reactivation of MAPK pathway against
BRAFi in BRAF-mutant CRC cells [9]. If BRAF and
CRAF are combined and represented by a single node
(RAF), such a reactivation mechanism cannot be analyzed.
Thus, we modeled BRAF and CRAF as separate nodes with
the same regulatory logics in our signaling network. Only
BRAF node was affected by BRAF mutation or inhibition
while CRAF node was intact in our simulations.

To investigate the dynamics of this CRC signaling net-
work without any genetic alterations, we performed quali-
tative simulations with different levels of inputs from 0 to
100%. If the level of an input was 30%, the state of the
input node was fixed to ON in 30% simulation steps or OFF
in the other 70%. The results showed that our network
model reproduced relevant input–output relationships of the
signaling network (Fig. 2b and Supplementary Table 2).
EGF stimulation exhibited a positive relationship with the
activity of ERK, AKT, S6K, c-MYC, and CyclinD, and
negative relationship with the activity of p27 [26]. DNA
damage stimulation exhibited a positive relationship with
the activity of p53 and p21 [27]. WNT stimulation exhibited
a positive relationship with the activity of β-catenin, c-MYC,
and CyclinD [28]. TGFβ stimulation exhibited a positive
relationship with the activity of Smad4 (combined with
Smad2/3), ERK, and AKT [29].

We next generated cell line-specific signaling networks
for CRC using genomic information The Cancer Cell Line
Encyclopedia (CCLE) [30]. Among the genetic alterations
of 60 CRC cell lines, we selected those producing func-
tional oncogenic mutations that mapped onto our signaling
network. The effect of the genetic alteration was categorized
as either the gain of function or the loss of function
according to OncoKB database [31], such that each genetic

alteration was mapped onto the network by a binary way:
activated (fixed as ON) or inactivated (fixed as OFF). The
result was 37 differentially wired CRC networks (Fig. 3).

Identification of combinatorial drug target for
overcoming adaptive resistance

To verify our simulation framework in cell line-specific
signaling networks of CRC, we compared the simulation
results of drug perturbations with those reported for pub-
lished experiments. In the literature, combination of MEKi
and RAFi suppressed ERK reactivation in KRAS-mutant
CRC cells (SW480) [10]. Similarly, this combination was
more effective in suppressing ERK activity in our simula-
tions of the corresponding CRC network (Supplementary
Fig. 3A). BRAFi caused ERK reactivation by EGFR via
CRAF in BRAF-mutant CRC cells (HT29, LS411N, and
SW1417) [9], and our simulation reproduced this adaptive
response and combination effect with EGFRi in the corre-
sponding CRC networks (Supplementary Fig. 3B).

To identify effective combination targets for an MAPK
inhibitor in our network model, we attempted to develop a
scoring system in target prediction metrics based on the
network mechanism for adaptive resistance. We expected
that critical nodes for adaptive resistance would show a high
amount of activity change (AC) after drug treatment, be
connected with a short NFL, transmit more positive bypass
signals to proliferation node, and transmit more negative
bypass signals to apoptosis node. The score was formulated
based on three criteria that take into account both network
dynamics and structure (Fig. 4a; and see “Methods”):
changes in node activity after drug treatment, strength of the
negative feedback, and the presence of bypass signaling.
We evaluated the change in the activity of candidate nodes
after the drug treatment, because a high increase in the
activity of a node upstream of the drug target node may
strongly contribute to pathway reactivation. We evaluated
feedback strength of candidate nodes as the activity changes
divided by the lengths of shortest NFLs between ERK and
candidate nodes, because the signaling effect of longer
pathways may be attenuated relative to shorter pathways
due to competition among signaling molecules and feed-
back structure with shorter length may be more functional
in adaptive resistance [32]. We evaluated the bypass sig-
naling effects from candidate nodes to cell survival and
apoptosis pathways, because these may also confer drug
resistance.

Based on the scores obtained from MEKi simulations of
the HCT116 and SW620 networks, and BRAFi simulation
of the HT29, upstream nodes such as EGFR and IGFR was
identified as effective targets in agreement with previous
experiments [33, 34] (Fig. 4b and Supplementary Data 2).
However, the most effective candidate target to overcome
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Fig. 2 Reconstruction of a large-scale signaling network of CRC.
a The reconstructed CRC signaling network is composed of 95 nodes
and 341 links. This network includes four input nodes and two phe-
notypic output nodes. The colors of other nodes indicate the corre-
sponding KEGG pathways. The links are classified as activation with a
blue arrow line or inhibition with a red blunted line. b Responses of

the network model to stimulation of input nodes: EGF, DNA damage,
WNT, or TGFβ. The stimulation level by the input nodes was varied in
the range of 0–100% representing the average ratio of the ON state
during the simulation time. The activity of downstream nodes was
measured by average ratio of the ON state during the simulation time.
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the resistance of MAPK pathway inhibitors was Src in those
cell networks. The scores for every node were obtained
from the simulations of 37 cell line-specific signaling net-
works, which predicted that Src is commonly found as the
best combination target with MAPK pathway inhibitors in
CRC cell lines, followed by EGFR, CRaf, and Akt (Sup-
plementary Data 3). This result was supported by extensive
simulations for inhibiting every node in combination with
initial drug treatments using MEKi for HCT116 and SW620
networks or BRAFi for HT29 network (Supplementary
Data 4). By evaluating activity changes of ERK, apoptosis,
and proliferation nodes from the simulation results, the most
effective combinatorial target was Src as predicted by the
score (Supplementary Fig. 4).

Src has a complex interaction with the MAPK pathway
in our network model (Fig. 4c). It would be noteworthy that

this network seems to be similar to the toy model of
interlinked bypass pathways (Fig. 1f, left). The role of Src
in the network corresponds to node D in the toy model of
which combinatorial inhibition is effective to suppress the
signaling. This suggests that inhibition of Src can cooperate
with the MAPK pathway inhibitors. Since Src participates
in positive feedback with upstream receptors that is
increased after treatment with MAPK pathway inhibitors,
Src can reinforce the adaptive activation of upstream sig-
naling. Activated Src can also directly stimulate the MAPK
pathway though a crosstalk with RAF to confer the pathway
reactivation. In addition, Src can activate a bypass pathway
through other survival pathways and eventually produce
drug resistance. Therefore, Src may function as a resistance
hub against the response to MAPK pathway inhibitors. To
predict the effect of drug combination in the CRC signaling

Fig. 3 Mapping genomic information to cell line-specific CRC
networks. The 37 differentially wired networks were generated by
integrating genomic information into the reconstructed signaling net-
work from CCLE database. The effect of the genetic alteration on the
corresponding node in the network was classified as constantly

activated (ON) or inactivated (OFF) state depending on the oncogenic
function of the alteration. Mapped networks were sorted by hier-
archical clustering (left). The ratio of genetic alteration for each node
among the 37 networks was plotted (right).
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network, the drug combination effects on the activities of
ERK and the output nodes, proliferation, and apoptosis,
were evaluated against the effects of single drug treatments.
Consistent with our hypothesis, the simulation results
showed that combination treatment with SRCi and MAPK
pathway inhibitors was effective in suppressing MAPK
pathway activity, as well as decreasing cell proliferation and
increasing apoptosis (Fig. 4d). Thus, we thought that SRCi
can broadly sensitize the responsiveness of MEKi or BRAFi
in KRAS- or BRAF-mutant CRC cells, respectively.

Empirical testing of the combination of an
Src inhibitor with an MAPK pathway inhibitor
in CRC cells

To examine whether combinatorial treatment with an SRCi
and an MAPK pathway inhibitor prevented resistance to the
MAPK pathway inhibitor in CRC cell lines, we used
dasatinib as the SRCi, trametinib as the MEKi, vemurafenib
as the BRAFi, and AZ628 as an RAFi in CRC cells with

KRAS mutations (HCT116 and SW620 cells) and cells with
a BRAF mutation (HT29 cells) (Supplementary Table 3).

The simulations of the HCT116 network (KRAS G13D
and PI3K H1047R mutations) showed that the combination
of SRCi with MEKi suppressed SRC activation induced by
MEKi, slightly reduced the activities of ERK and pro-
liferation nodes, and effectively increased the activity of
apoptosis node (Figs. 4d and 5a). In the experiments with
these cells, we exposed the cells to trametinib alone, dasa-
tinib alone, or their combination for 3 days. We monitored
cell confluence (Fig. 5b), viability (Fig. 5c), colony for-
mation (Fig. 5d), activity of ERK and SRC (amount of their
phosphorylated forms by Western blot) (Fig. 5e), and
apoptosis by flow cytometry analysis (Fig. 5f, g). The
combination of trametinib and dasatinib had a synergistic
inhibitory effect in the viability of HCT116 cells (Fig. 5b,
c). In addition, crystal violet assays and phase contrast
images also confirmed the synergistic effect (Fig. 5d).
Consistent with our expectations, HCT116 cells exposed to
trametinib exhibited a transient reduction in pERK 1 h after

Fig. 4 Identification of combinatorial targets for overcoming
adaptive resistance. a Three criteria for identifying a combinatorial
target from candidate nodes: change in the activity of a candidate node,
the strength of the feedback loop between ERK and a candidate node,
and the effect of bypass signaling of a candidate node on proliferation
and apoptosis. b Top three scores of candidate combinatorial targets
for MEKi in the HCT116 (left) and SW620 networks (middle), and
BRAFi in the HT29 network (right). c Simplified network of the
interactions between Src and the MAPK pathway (right) extracted
from the CRC signaling network (left). d The simulation results for

drug combination of SRCi with MEKi or BRAFi in the cell line-
specific networks with activated RAS or BRAF mutations, respec-
tively. The combination effect on ERK node was evaluated as the
difference between the activity change of combined drug treatments
and the maximum activity change of single drug treatments. The
combination effects on proliferation and apoptosis nodes were eval-
uated as the difference between the activity change of combined drug
treatments and the summed activity change of single drug treatments.
The cell line names with a rectangle were used for further experimental
validations.
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exposure, and this was followed by a rebound in its activity
after 24 h (Fig. 5e). In contrast, SRCi alone had little effect
on pERK abundance, but the combination of trametinib and
dasatinib limited the rebound in ERK activity after 24 h.
Furthermore, as predicted in our simulations, the combi-
nation treatment of MEKi and SRCi significantly increased
early (PI−, FITC-annexin V+) and late (PI+, FITC-annexin
V+) cell death compared with those cells treated with
MEKi alone or SRCi alone in HCT116 cells (Fig. 5f, g).

The simulations of the SW620 network, which has KRAS
G12V mutation without PI3K mutation, also showed com-
binatorial effect of SRCi and MEKi (Figs. 4d and 5h). In
this cell line, SRCi alone had less of an inhibitory effect on
viability than SRCi alone had on HCT116 cells (compare
Fig. 5b and Fig. 5i, and Fig. 5c and Fig. 5j). However,
like the HCT116 cells, the combination of dasatinib and
trametinib was synergistic in reducing cell viability
(Fig. 5i–k).

Feedback analysis identifies a combination target for overcoming adaptive resistance to targeted cancer. . . 3811



To determine if this synergistic response was also
observed with cells with a mutation at a different point in
the MAPK pathway and with drugs targeting that mutated
node, we examined the effect of combining SRCi with the
targeted inhibitor in HT29 (BRAF V600E mutation) cells.
The simulations of the HT29 network predicted the com-
binatorial effect of SRCi and BRAFi that suppression of
SRC activation induced by BRAFi, decreased activities of
ERK and proliferation nodes, and effectively increased
activity of apoptosis node (Figs. 4d and 6a). To test for the
predicted synergistic reduction in viability, we exposed the
cells to vemurafenib or AZ628 alone, dasatinib alone, or
their combination for 5 days. We tested three concentrations
of dasatinib. Although the lowest concentration of dasatinib
was ineffective in reducing viability alone, when combined
with either the AZ628 or the vemurafenib, viability was
significantly reduced (Fig. 6b, c and Supplementary Fig. 5).
Crystal violet assays and phase contrast images also showed
the synergistic inhibition of cell viability (Fig. 6d). Western
blot analysis of HT29 cells exposed to vemurafenib
revealed a transient reduction in pERK within 1 h, followed
by a rebound of its abundance after 24 h (Fig. 6e and
Supplementary Fig. 6). Exposure to the SRCi alone or in
combination with the BRAFi reduced pERK for the entire
48 h evaluated. In addition, combination treatment with

dasatinib and vemurafenib increased early (PI−, FITC-
annexin V+) and late (PI+, FITC-annexin V+) cell death in
HT29 cells compared with those cells treated with BRAFi
alone or SRCi alone (Fig. 6f, g). Taken together, single drug
treatment of MAPK pathway inhibitors caused pathway
reactivation and adaptive resistance in CRC cells with either
KRAS or BRAF mutations, but combination treatment with
SRCi suppressed adaptive resistance and increased the
sensitivity of the cells to the cytotoxic effects of the MAPK
inhibitors.

Targeting resistance-mediating hub node in
feedback structure as combinatorial targets

Our simulations and experimental data with the CRC cells
indicated that targeting resistance-mediating hub nodes,
such as Src, may enhance the efficacy of drugs targeting
molecules downstream within oncogenic signaling path-
ways by preventing adaptive resistance (Fig. 7a and Sup-
plementary Fig. 7). The MAPK pathway is frequently
altered many cancers [35, 36]. To determine if Src repre-
sented a resistance-mediating node in other cancers with
mutations in the MAPK pathway, we tested the effects of
the combination of an MAPK inhibitor and SRCi in lung
cancer cell lines, SW1573 and A549, with KRAS mutations
and in a triple negative breast cancer cell line, MDA-MB-
231, with both KRAS and BRAF mutations (Supplementary
Table 3). Although individually the MEKi and SRCi
reduced cell viability, the combined treatment was more
effective in reducing the viability of SW1573 (KRAS
G12C) (Fig. 7b–d) and A549 (KRAS G12S) lung cancer
cells (Supplementary Fig. 8). Similarly, combined treatment
of MEKi or RAFi and SRCi synergistically impaired cell
viability of MDA-MB-231 (KRAS G13D and BRAF
G464V) triple negative breast cancer cells (Fig. 7e–g).
These data with the lung cancer and breast cancer cells
indicated that the combination of MAPK pathway inhibitors
and SRCi might prevent adaptive resistance and exhibit
benefit in cancer patients with MAPK pathway alterations.
Although our signaling network was constructed for CRC,
we tested the application of our approach for lung and
breast cell lines by mapping the genomic information from
CCLE database to our signaling network (Supplementary
Fig. 9A). The scores calculated for MEKi and RAFi from
the mapped networks generally predicted SRC as an
effective combinatorial target, which are in agreement with
the above experimental results, except for the A549 network
(Supplementary Fig. 9B and Supplementary Data 5).
Beyond our CRC signaling network, applying our approach
to cancer type-specific networks may make more valuable
predictions.

Src represents a regulatory node in other receptor tyr-
osine kinase pathways with positive feedback loops, in

Fig. 5 Combination effect of SRCi and MEKi in KRAS-mutant
CRC cells. a Simulated drug response curves in the HCT116 network.
b Analysis of cell growth. HCT116 cells were incubated for 24 h in
96-well plate (0.7 × 104 cells/well) and then treated with MEKi (tra-
metinib, 0.01 μM) alone, SRCi (dasatinib, 0.1 μM) alone, or in com-
bination for 3 days. Cell growth was determined by cell confluence
(%). c Analysis of cell viability. Cell viability was determined by the
WST-1 assay after 3 days treatment with indicated drugs. d Images
were taken 3 days after the indicated treatments (left). Crystal violet
staining of colony growth treated with indicated drugs (right).
e HCT116 cells were subjected to the indicated treatments, then the
indicated proteins were detected by Western blot. pERK is an indicator
of adaptive resistance. pERK and p-SRC were quantified and nor-
malized with GAPDH. Line graphs were plotted by fold change values
normalized with vehicle at each time point. f Apoptotic cell death of
HCT116 cells. Cells were treated with the MEKi (0.01 μM), SRCi
(0.1 μM), and MEKi plus SRCi for 48 h. Cells were stained with PI
and Annexin V-FITC, and were analyzed by flow cytometry (Q4: live
cells; Q3: early apoptotic cells; Q2: late apoptotic cells; Q1: necrotic
cells). The acquisition of Annexin V-FITC and PI data is expressed as
a percentage (%) in each quadrant. g The percentage of apoptotic cell
death was examined by annexin V-FITC/PI staining and flow cyto-
metry analysis. The results are presented as mean ± SD of two inde-
pendent experiments. h Simulated drug response curves in the SW620
network. i Analysis of cell growth. SW620 cells were treated with
MEKi (trametinib, 0.01 μM) alone, SRCi (dasatinib, 1 μM) alone, or in
combination for 5 days. Cell growth was determined by cell con-
fluence (%). j Analysis of cell viability. Cell viability was determined
by WST-1 assay after 5 days treatment with indicated drugs. k Images
of SW620 cells were taken 5 days after the indicated treatments (left).
Crystal violet staining of colony growth treated with indicated drugs
(right). The results are presented by means ± SEM (error bars) (n= 3).
*P < 0.05 by two-sided Student’s t test.
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Fig. 6 Combination effect of SRCi and BRAFi in BRAF-mutant
CRC cells. a Simulated drug response curves in the HT29 network.
b Analysis of cell growth. HT29 cells were incubated for 24 h in 96-
well plate (0.7 × 104 cells/well) and then treated with BRAFi
(vemurafenib, 1 μM) or RAFi (AZ628, 1 μM) alone, SRCi (dasatinib,
0.01, 0.1, or 1 μM) alone, or in combination for 5 days. Cell growth
was determined by cell confluence (%). c Analysis of cell viability.
Cell viability was measured by using WST-1 assay after 5 days
treatment with indicated drugs. The results are presented by means ±
SEM (error bars) (n= 3). *P < 0.05 by two-sided Student’s t test.
d Images were taken 5 days after the indicated treatment (left). Crystal
violet staining of colony growth treated with indicated drugs (right).
e HT29 cells were subjected to the indicated treatments, then the

indicated proteins were detected by Western blot. pERK is an indicator
of adaptive resistance. pERK and p-SRC were quantified and nor-
malized with GAPDH. Line graphs were plotted by fold change values
normalized with vehicle at each time point. f Apoptotic cell death of
HT29 cells. Cells were treated with the BRAFi (0.5 μM), SRCi
(0.1 μM), and BRAFi plus SRCi for 48 h. Cells were stained with PI
and Annexin V-FITC, and were analyzed by flow cytometry (Q4: live
cells; Q3: early apoptotic cells; Q2: late apoptotic cells; Q1: necrotic
cells). The acquisition of Annexin V-FITC and PI data is expressed as
a percentage (%) in each quadrant. g The percentage of apoptotic cell
death was examined by annexin V-FITC/PI staining and flow cyto-
metry analysis. The results are presented as mean ± SD of two inde-
pendent experiments.
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particular those that stimulate the PI3K pathway (Fig. 7h).
Therefore, we investigated whether the proposed combina-
torial treatment strategy model could be applied generally to

signal networks with this structure. The PI3K pathway is
another frequently mutated oncogenic pathway that is
involved in cancer proliferation and survival [37], and
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various cancer drugs target this pathway [38]. Similar to the
MAPK pathway, Src interacts with the PI3K pathway with
upstream and downstream nodes and represent a bypass
pathway in our network model (Fig. 7h and Supplementary
Fig. 10A). Therefore, this network can be abstracted with
the same feedback structure as in Fig. 7a.

To investigate the combination of PI3K pathway inhi-
bitor and SRCi, we treated HCT116 cells, which have both
a KRAS mutation and a PI3K mutation, with the PI3Kα
inhibitor BYL719 or the PI3K and mechanistic target of
rapamycin (mTOR) inhibitor BEZ235, the SRCi dasatinib,
or their combination for 6 days and monitored viability (Fig.
7i–k). Like the combination of SRCi and MAPK inhibitor,
the combination of PI3K pathway inhibitors and SRCi
synergistically reduced viability (Fig. 7i, k) and induced
death of HCT116 cells (Fig. 7j). The scores calculated for
PI3K inhibitor (PI3Ki) from the HCT116 network also
predicted SRC as the most effective combinatorial target
(Supplementary Fig. 10B and Supplementary Data 5).
These results indicated that combinatorial targeting of the
resistance-mediating hub in the oncogenic pathway net-
works with such a feedback and regulatory structure may be
an effective mechanism to overcome resistance to drugs
targeting the oncogenic pathway.

Discussion

Cancer is caused by the accumulation of genetic alterations
resulting in a rewired signaling network that maintains
cancerous growth and survival [39, 40]. Molecular-targeted
therapy aims to disturb the cancer signaling network by
inhibiting specific drug targets, such as signaling molecules
in the oncogenic network [41]. Most targeted drugs inhibit
the oncogene or oncogenic pathway that drove tumorigen-
esis [42]. However, emergence of resistance in cancer is a
substantial barrier to long-term effectiveness of cancer
treatment with targeted drugs [1]. In the signaling network
of cancer cells, negative feedback regulatory loops from
downstream to upstream of a pathway and crosstalk links
between pathways maintain cellular homeostasis [3]. Thus,
inhibition of the target can relieve negative feedback from
the drug target and activate upstream signaling in the tar-
geted pathway, resulting in reactivation of the targeted
pathway or compensatory activation of bypass signaling
pathways [2, 43]. Collectively or individually, these events
cause adaptive resistance and are often induced by drugs
targeting various pathways. Consequently, adaptive resis-
tance is common in targeted cancer therapy. Therefore, it is
necessary to establish new strategies to maximize the ther-
apeutic efficacy and prevent adaptive resistance. Here, we
developed a probabilistic Boolean simulation framework to
analyze adaptive resistance in a signaling network and to
identify combinatorial targets for overcoming the resistance.
The model simulations predicted Src as a key combinatorial
target, and we experimentally demonstrated that co-
inhibition of Src increased sensitivity of CRC cells to the
cytotoxicity of either MAPK-targeted or PI3K-targeted
inhibitors.

Systems approaches combined with computational
methods have revealed underlying mechanisms of complex
biological phenomena [44–54], including how adaptive
drug resistance occurs in cancer [55, 56]. Such analyses
were usually performed with ODE models, but analysis of
signaling networks with ODE models is limited by the scale
of the network, because ODE models require fitting all the
kinetic parameter values to time-series experimental mea-
surements [17–19]. Thus, previous studies of adaptive
resistance to drugs using ODE models mainly focused on
small-scale networks that included a few pathways. In
contrast to ODE models, analysis of signaling networks
with a Boolean model is extendable to large-scale networks,
because Boolean models are parameter free, as well as
computationally tractable because they incorporate the dis-
crete state of a node and the logical relationship between
nodes. However, we showed that the deterministic drug
simulation of previous cancer studies is not suitable for the
analysis of the dynamics of networks with feedback reg-
ulation. Instead, we developed a probabilistic Boolean

Fig. 7 Proposed generic model for the role of Src in adaptive
resistance. a The abstracted generic model for adaptive resistance in
the signaling network (left). Adaptive resistance can emerge from
targeting an oncogenic pathway (middle), and targeting a resistance
hub can prevent resistance (right). b Analysis of cell growth. SW1573
cells were incubated for 24 h in 96-well plate (0.7 × 104 cells/well) and
then treated with MEKi (trametinib, 1 μM) alone, SRCi (dasatinib, 0.1)
alone, or in combination for 6 days. Cell growth was determined by
cell confluence (%). c Images were taken 6 days after MEKi alone,
SRCi alone, or in combination treatment (left). Crystal violet staining
of colony growth treated with indicated drugs (right). d Analysis of
cell viability. Cell viability was measured by using WST-1 assay after
6 days treatment with indicated drugs. e Analysis of cell growth.
MDA-MB-231 cells were incubated for 24 h in 96-well plate (0.7 ×
104 cells/well) and then treated with MEKi (trametinib, 0.01 μM) or
RAFi (AZ628, 1 μM) alone, SRCi (dasatinib, 0.1 μM) alone, or in
combination for 60 h. Cell growth was determined by cell confluence
(%). f Images were taken 60 h after MEKi alone, SRCi alone, or in
combination treatment (top). Crystal violet staining of colony growth
treated with indicated drugs (bottom). g Analysis of cell viability. Cell
viability was measured by using WST-1 assay after 60 h treatment
with indicated drugs. h The network model for adaptive resistance in
the PI3K pathway with regulatory input from SRC. i Analysis of cell
growth. HCT116 cells were incubated for 24 h in 96-well plate (0.7 ×
104 cells/well) and then treated with PI3Ki (BYL719, 1 μM) or BEZ
(NVP-BEZ235, 0.1 μM) alone, SRCi (dasatinib, 0.1 μM) alone, or in
combination for 5 days. Cell growth was determined by cell con-
fluence (%). j Images were taken 5 days after the indicated treatment
(top). Crystal violet staining of colony growth treated with indicated
drugs (bottom). k Analysis of cell viability. Cell viability was mea-
sured by using WST-1 assay after 5 days treatment with indicated
drugs. The results are presented by means ± SEM (error bars) (n= 3).
*P < 0.05 by two-sided Student’s t test.
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framework and demonstrated that the dynamics of such
complex networks can be captured by this framework.

We selected to evaluate adaptive resistance to drugs
targeting the MAPK pathway, because such drugs are used
clinically and resistance is common. We computationally
identified Src as a combinatorial target. Src is a nonreceptor
tyrosine kinase with regulatory inputs into several signaling
pathways, including the EGFR, IGFR, and JAK/STAT
pathways. Src has been investigated as a molecular target
for cancer therapy, because the abundance and activity of
Src increase during CRC progression [57]. However, single
treatment with SRCi in CRC failed to produce the pro-
mising results in clinical trials [58]. Further studies sought
an effective combinatorial drug for SRCi targeting an
upstream receptor [58]. Although combined treatment of
SRCi with EGFRi was effective in CRC cells [59], this
combination showed little clinical activity in CRC patients
[60]. Here, we identified Src as an effective combination
target with MAPK pathway inhibitors. We also demon-
strated experimentally that combining SRCi with BRAFi or
MEKi in KRAS- or BRAF-mutant CRC cells produced a
synergistic reduction on cell viability. Our findings with
MEKi and SRCi are consistent with a previous study of
KRAS-mutant CRC cells [61]. Unlike the previous study,
which identified Src by extensive screening experiments
using CRISPR/Cas9, we found Src as a combination target
through systems analysis of a network model using simu-
lations. Thus, our approach avoids the need for extensive
experiments.

We note the assumption behind the presented method
and the resulting limitations. In our scoring measure for
selecting combinatorial targets, we assumed the pathway
distance as a negative factor since we considered the
activity changes of the nodes in shorter distances would
have greater effects on a target node compared with those
distant nodes the effects of which on the target node might
be compensated or interrupted during their longer signal
transduction by signals from different paths in the whole
signaling network where crosstalks and feedback regula-
tions result in complicated wiring. However, in some cases,
a signaling pathway can amplify signals through signal
transduction and this may result in unexpected con-
sequences on influencing the target node. Our approach
may not identify such distant but actually effective node
whose signaling is not diluted along the pathway, which is
the limitation of the presented method.

Traditional clinical trials in oncology have tested a drug
effect in specific cancer type [62]. Basket trials test a drug
effect in patients with a specific genomic profile regardless
of their cancer types [62]. Similar to the strategy of targeting
therapy on the basis of genomic profile, our study suggested
that a common drug combination strategy can be applied to
patients with genetic alterations within the MAPK signaling

pathway. We showed that combined treatment of SRCi and
MAPK pathway inhibitors is effective in CRC, lung, and
breast cancer cells. The combination of SRCi is effective
with BRAFi in BRAF-mutant melanoma [63] or with RAFi
in BRAF- or NRAS-mutant melanoma and that combining
SRCi with RAFi prevents pathway reactivation [64]. Our
data and the previous results support that hypothesis that
Src is an effective combinatorial target for MAPK pathway
inhibitors in various cancer types. Many cancers have
multiple cancer-driving mutations. Indeed, HCT116 cells
have mutations in both the MAPK pathway and the PI3K
pathway. Importantly, we showed that combined treatment
of SRCi and PI3K pathway inhibitors is also effective in
reducing CRC cell viability in cells with activating muta-
tions in both the MAPK and PI3K pathway. Taken together,
our data indicated that Src has a pivotal role in drug resis-
tance to multiple pathways, particularly for MAPK and
PI3K pathways, in a wide range of cancer types.

An advantage of our approach is that it is generalizable.
By developing a PBN and applying probabilistic simula-
tions, we demonstrated that such an approach can identify
resistance-mediating nodes in a complex network with
NFLs and interpathway connections. Furthermore, we
generated a large-scale signaling network representing
pathways important in controlling cancer cell proliferation,
survival, and apoptosis and integrated genomic information
into the PBN to produce networks specific to a cancer’s
genetic profile. Although here we applied our framework to
CRC and identified Src as an effective combination target
with MAPK inhibitors and PI3Ki, this approach can be
widely used to discover critical combinatorial therapeutic
strategies to overcome the commonly observed adaptive
resistance in cancer.

Methods

Drug simulation framework using probabilistic
Boolean modeling

Protein activity is actually a continuous value measured by
amounts of phosphorylated form or expression levels of a
protein. However, a Boolean model represents the state of a
node (i.e. protein activity) in a binary fashion as 0 or 1 to
simplify the computational complexity. To overcome such a
limitation, various previous studies using Boolean models
estimated a node activity by measuring the average ON
state of nodes over repeated simulations [65–68]. By
adopting such an approach in our simulation framework, we
could quantitatively interpret an intermediate activity
of nodes.

The state of a node targeted by a drug was probabil-
istically updated according to one of two truth tables: either
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a table containing original logical dynamics or a table
representing drug inhibition in which all the output states of
the table are OFF (Supplementary Fig. 1). The inhibition
ratio of a drug target node, ranging from 0 to 1, determined
the probability that the node updates its state following the
table for inhibitory logic; otherwise, the node updates its
state following the table for original logic. After
10,000 simulation steps of probabilistic drug perturbation
with an inhibition ratio, the activity of each node was cal-
culated by the average of state values during the simulation.
The drug effect was measured by AUC of the response
curve indicating the change of activity with the change of
inhibition ratio.

After drug treatment to a node within NFLs, its down-
stream node can be reactivated over time such that the node
activity is transiently inhibited and then increased similarly to
its initial activity level as illustrated in Fig. 1b. However,
analysis of time-dependent changes is limited in Boolean
models, which mainly concern steady-state dynamics.
Therefore, we focused the steady-state phenomena caused by
the reactivation mechanism, which is drug resistance in NFLs.

Construction of the signaling network

We reconstructed a Boolean model for a signaling network
of CRC by integrating the published literature and infor-
mation from public databases. The resulting network con-
sisted of 95 nodes and 341 links as provided in
Supplementary Data 1: source denoted upstream nodes that
are molecules regulating target nodes; target denoted
downstream nodes that are molecules regulated by source
nodes; link type denoted regulations between source and
target nodes as “+” for an activatory link and “−” for an
inhibitory link; logic equation denoted logical functions of
target nodes that were determined by mechanistic infor-
mation of the relevant literature. When information about
detailed regulation relationship was limited, we formulated
the logical function of a node with multiple inputs using OR
gates for activatory links and AND gates for inhibitory links
[69]. The basal activity of the EGF input node was set to 0.5
throughout drug simulations.

Score for selecting combinatorial targets

The AC measured adaptive effects of node activity by
drugs. In the response curve of nodes obtained from drug
simulations, the AC of each node was calculated by AUC
above the node activity prior to drug administration.

In a signaling network, competition between signaling
molecules occurs when multiple downstream molecules are
regulated by a common upstream molecule. If one down-
stream molecule is fully regulated by an upstream molecule,
others are less regulated due to the limited binding capacity.

In consequence, the signaling effect can be diluted along
different pathways, resulting in attenuation depend on the
length of a pathway. To adjust distance effects of feedback
loops in adaptive responses, we divided AC by the length of
shortest NFL (LN) between each node and ERK in the
nominal network (Supplementary Fig. 11).

Bypass signaling effects from each node to output nodes,
apoptosis (BA) and proliferation (BP), were calculated in
the nominal network considering distance effects of bypass
paths as follows:

BP ¼
Xl

k¼1

1
LþP kð Þ �

Xl

k¼1

1
L�P kð Þ;

BA ¼
Xl

k¼1

1
LþA kð Þ �

Xl

k¼1

1
L�A kð Þ;

where LA or LP denotes the set of lengths of every path from
each node to apoptosis or proliferation node, respectively.
L+ or L− includes the lengths of activatory or inhibitory
paths to the corresponding output node, respectively. L(k)
denotes the path lengths of k. Among the paths whose
lengths were in the range of 1 to l, we calculated the bypass
signaling effect by subtracting the sum of the inverted
lengths of all activatory pathways from the sum of the
inverted lengths of all inhibitory pathways (Supplementary
Fig. 11). Since the characteristic path length of the CRC
signaling network was calculated as 3.989, which is the
average shortest path length between nodes, we used a large
value of l= 8 as the maximum path length to consider.
Consequently, a node enriched with short activatory paths
to output nodes gets a high value for bypass signaling
effects.

Finally, the score was calculated as follow:

Score ¼ AC � θ ACð Þ
LN

� BP� BAð Þ;

where θ denotes Heaviside step function whose value is 0 or
1 for negative or positive arguments, respectively. We
multiplied θ(AC) to consider a node with only positive AC
as a candidate of a combination target. Thereby, nodes
showing high AC in the positive direction, connected by
short LN, and transmitting more positive BP and more
negative BA can get high scores.

Cell culture

HT29 (BRAF V600E and PI3K P449T) and SW1573
(KRAS G12C) cells were obtained from the American Type
Culture Collection (ATCC). HCT116 (KRAS G13D and
PI3K H1047R), SW620 (KRAS G12V), A549 (KRAS
G12S), and MDA-MB-231 (KRAS G13D and BRAF
G464V) cells were obtained from Korean Cell Line Bank.
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All cell lines were cultured in Dulbecco’s modified Eagle’s
medium (WelGENE Inc., Gyeongsan, Republic of Korea)
with 10% fetal bovine serum (FBS, WelGENE Inc.) and
antibiotics (100 U/ml of penicillin, 100 μg/ml streptomycin,
and 0.25 μg/ml of Fungizone) (Life Technologies Corp.,
Carlsbad, CA) at 37 °C in a humidified atmosphere con-
taining 5% CO2.

Reagents

Trametinib (GSK1120212, MEK1/2 inhibitor) was pur-
chased from APExBIO (Boston, MA, USA). AZ628 (pan-
Raf inhibitor), dasatinib (SRCi), vemurafenib (PLX4032,
B-RafV600E inhibitor), alpelisib (BYL719, PI3Kα inhibitor),
and dactolisib (NVP-BEZ235, PI3K, and mTOR inhibitor)
were obtained from Selleckchem (Houston, TX, USA).
Crystal violet solution, dimethyl sulfoxide (DMSO), and
paraformaldehyde (PFA) were obtained from Sigma-
Aldrich (Saint Louis, MO, USA).

Cell growth and viability assays

Cells were seeded into 96-well plate at a density of 3–7 ×
103 cells/well in growth medium, incubated for 24 h and
then treated with the indicated drugs. Following incubation
of the plates for 72–120 h, relative cell viability was mea-
sured. After seeding, cells were imaged using IncuCyte
ZOOM. To assess cell growth, average areas of cells were
determined at each time point using the IncuCyte ZOOM
analysis software. Images were captured at 3 h intervals
from three separate regions per well with a 20× objective.
Relative cell viability was measured with WST-1 solution
(Daeillab, Republic of Korea) by measuring absorbance at
450 nm using an xMark™ Microplate Absorbance Spec-
trophotometer (Bio-Rad, Hercules, CA).

Cristal violet assay

Cells were seeded at 3–7 × 103 cells/well. The next day,
cells were treated with the indicated drugs and doses. Cells
were incubated for 3–7 days after drug addition, plates were
rinsed with PBS, fixed, and then stained with 0.5% (w/v)
crystal violet (Sigma-Aldrich) for 30 min at room tem-
perature. Plates were rinsed with tap water, dried, and
photographed the next day.

Western blot analysis

Cells were lysed in lysis buffer (20 mM HEPES, pH 7.2,
150 mM NaCl, 0.5% Triton X-100, 10% glycerol, 1 μg/ml
aprotinin, 1 μg leupeptin, 1 mM Na3VO4, 1 mM NaF). For
immunoblotting, anti-ERK1/2 (#9102), anti-phospho-
ERK1/2 (#4370), anti-phospho-Src (#6943, Cell Signaling

Technology, Inc., Danvers, MA), and anti-β-actin (sc-1616,
Santa Cruz Biotechnology, Inc., Dallas, TX) were used. The
rabbit polyclonal anti-GAPDH antibody was a generous gift
from Dr Ki-Sun Kwon (Korea Research Institute of
Bioscience and Biotechnology). The protein bands were
quantified in ImageJ (NIH, Bethesda, MD).

Measuring apoptosis using flow cytometry

Apoptosis was analyzed by Annexin V-FITC/PI apoptosis
detection kit (abcam, Cambridge, UK) using flow cytometry
(FACSAria II, BD Biosciences, San Jose, CA). Briefly,
HCT116 and HT29 cells (1 × 106 cells) were seeded into
10 cm dish and treated with indicated drugs for 48 h. And
then, cells were harvested, washed with PBS, resuspended
in 1× binding buffer, labeled with FITC conjugated
Annexin V and PI, and acquired on FACSAria II flow
cytometry (BD Biosciences) using the FACSDIVA™
software (BD Biosciences). At the end, percentages of
apoptotic cells were calculated using FlowJo™ software
(Version 10.6.1, BD Biosciences).

Statistical analysis

Statistical analysis was performed using two-sided Stu-
dent’s t test. Differences were statistical significant at P <
0.05. All experiments were repeated at least three times, and
data were shown as the mean ± SEM.

Code availability

All codes are available from the authors upon request.
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