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A logical network-based drug-screening platform
for Alzheimer’s disease representing pathological
features of human brain organoids
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Developing effective drugs for Alzheimer’s disease (AD), the most common cause of

dementia, has been difficult because of complicated pathogenesis. Here, we report an effi-

cient, network-based drug-screening platform developed by integrating mathematical mod-

eling and the pathological features of AD with human iPSC-derived cerebral organoids

(iCOs), including CRISPR-Cas9-edited isogenic lines. We use 1300 organoids from 11 parti-

cipants to build a high-content screening (HCS) system and test blood–brain barrier-

permeable FDA-approved drugs. Our study provides a strategy for precision medicine

through the convergence of mathematical modeling and a miniature pathological brain model

using iCOs.
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A lzheimer’s disease (AD) is the most common form of
dementia, afflicting more than 40 million individuals
worldwide1. Symptoms include memory deterioration

and cognitive impairment, resulting from neuronal loss, hippo-
campal atrophy, and brain inflammation2. On the molecular
level, the pathology is characterized mainly by the accumulation
of amyloid plaques, neurofibrillary tangles, and dystrophic
neurites consisting of hyper-phosphorylated tau protein3, which
can be identified by Pittsburgh compound B (PiB)-positron
emission tomography (PET) and tau-PET, respectively4. The
difficulty of acquiring human brain samples and the lack of a
disease model that adequately recapitulates the pathological
hallmarks pose significant challenges in the field.

Numerous animal and cellular models have been developed to
tackle this issue, but each has unresolved limitations. Animal
models provide valuable insights into disease mechanisms, but
the commonly used transgenic rodent models carry familial AD
mutations that account for 5% of all AD cases, although the most
common type of AD is sporadic cases (>95%) in which apoli-
poprotein E (ApoE) ε4 allele is the major genetic risk factor for
sporadic AD5. Moreover, AD phenotypes do not appear spon-
taneously with aging in non-transgenic mice, casting doubt on the
existence of disease-initiating molecular pathways in these spe-
cies6. Cellular models, such as iPSC-derived neurons, offer the
advantage over animal models in having a human genetic
background7,8, but conventional monolayer culture, which lacks
the interstitial space, fails to show the extracellular amyloid
aggregate deposition that is a major hallmark of AD9,10. These
limitations could explain the consistent clinical failure of medi-
cations found to be effective in pre-clinical models11,12. A phy-
siologically relevant human-derived in vitro model for drug
screening is urgently needed to enable the successful translation
of AD drug candidates from bench to bedside.

In recent years, the development of cerebral organoids has
opened up a previously unknown realm of the human brain that
could not be explored due to limited accessibility13,14. Several
groups have demonstrated the applicability of cerebral organoids
in neurodegenerative studies by integrating genetic mutations
that are definite causes of the disease10,15. These studies have
shown that using cerebral organoids as a three-dimensional (3D)
in vitro model can provide aspects of and insights into patholo-
gical conditions that could not be recapitulated in conventional
monolayer culture. These include extracellular deposition of
amyloidogenic peptides, propagation of protein through complex
cell-to-cell interactions in a spatial context, and the impaired
interplay of diverse cellular subtypes16. The guided formation of
cerebral organoids by the timed supplementation of cells with
defined growth factors has been shown to yield multiple neuronal
subtypes at consistent proportions14,17. Using this method, we
were able to produce a massive number of homogeneous orga-
noids suitable for high-content screening (HCS) system.

AD is a multifactorial disease that is caused by malfunctions in
its complex regulatory processes, such as vesicle trafficking,
endocytosis, lipid metabolism, and immunity18–20. Several sub-
types of AD exist according to their different onset mechanisms
that depend on causal risk factors, which signifies the need to
identify optimal drug target for each risk factor21,22.

Given the complexity arising from the diverse risk factors and
multi-step pathogenic processes of AD, it is difficult to identify a
disease-modifying target for each patient by conventional single
pathway analysis. Hence, an integrated system-level approach is
required to determine an optimal drug target with the con-
sideration of the existing genetic factors and their effects on the
complex molecular landscape23.

In this study, we show that iPSC-derived cerebral organoids
(iCOs) developed from sporadic AD patients who are predisposed

for an increased brain burden of both amyloid and tau, recapi-
tulate the pathological features of the disease. Mass production of
iCOs that are uniform in size and homogeneous in cell compo-
sition enabled us to perform drug screening using HCS system on
a physiologically relevant platform. Mathematical modeling
considering a network of molecular pathways and relevant
genetic factors was employed to identify several FDA-approved
drugs as candidates for drug repositioning. In sum, by integrating
mathematical modeling and pathological features of brain orga-
noids, we herein developed a drug-screening platform that can be
expanded for use in precision medicine.

Results
The overall scheme of this study and demographics of parti-
cipants. The overall scheme of this study is presented in Fig. 1.
Briefly, to mimic the brain of sporadic AD patients, iCOs were
generated from PiB-negative or PiB-positive participants (PiB
iCOs: PiB− iCOs and PiB+ iCOs). iCOs from CRISPR-Cas9-
edited apolipoprotein E (ApoE) ɛ4 isogenic iPSC lines were also
used (ApoE iCOs: E3par parental iCOs and E4iso isogenic iCOs).
The process of making sAD organoids is summarized in Fig. 2a as
a flow-chart. The demographic information of participants is
shown in Supplementary Table 1. After checking the pathological
features of iCOs, we performed network modeling and pertur-
bation analysis, and used the results to select candidate drugs. We
tested the efficacy of the candidate drugs by HCS system and
neuronal cell death assays. All experiments and analyses are
detailed in Figs. 2–6.

Characterization of the generated iPSCs and iCOs. The meth-
ods used to generate the iPSCs and iCOs are presented in the
Methods. The generated iPSCs showed alkaline phosphatase
(ALP) positivity (Supplementary Fig. 1a) and expressed stem cell
marker proteins, such as Oct4, Tra1-60, and Sox2 (Supplemen-
tary Fig. 1b, c). We also checked the karyotypes (Supplementary
Fig. 1d). All of the generated iPSCs had normal karyotypes except
for PiB+ #1 iPSCs, which showed triple X syndrome, and were
thus excluded from the comparative analyses of PiB− iCOs vs
PiB+ iCOs. We also quality-checked the generated iCOs. On day
60, the iCOs showed some regions of Sox2+ neuroepithelial
budding zones and had NeuN+ or beta III-tubulin+ neuronal
cells (Supplementary Fig. 2a). We also performed RNA sequen-
cing using both PiB iCOs and ApoE iCOs. Their total mRNA
expression levels were stable, and no difference was observed
between the iCOs (Supplementary Fig. 2b–e). PiB iCOs showed
1418 up-regulated and 247 down-regulated differentially expres-
sed genes (DEG) patterns, and ApoE iCOs showed 1573 up-
regulated and 545 down-regulated DEG patterns (Supplementary
Fig. 2f, g). The top 10 diseases related to the DEGs, as determined
by Gene Ontology (GO) analysis, included ‘AD dementia’ for
both PiB iCOs and ApoE iCOs (Supplementary Fig. 2h). These
results verified that our iPSCs and iCOs were well qualified and
ready for our experiments.

Pathological features of sAD iCOs. To confirm that the iCOs
could show pathological phenotypes, we checked the levels of
pathogenic proteins, such as beta-amyloid (Aβ)1-42, Aβ1-40, total
tau, and phosphorylated tau (p-tau), secreted to conditioned
media. As expected, PiB+ iCOs secreted higher levels of these
proteins than PiB− iCOs (Fig. 2c, upper), and all of these levels
were significantly correlated to the corresponding degree of real
brain Aβ deposition, which was represented by the Pittsburgh
compound B-positron emission tomography (PiB-PET) standar-
dized uptake value ratio (SUVR) (Fig. 2d). Interestingly, among
the PiB+ iCOs, ApoE ɛ4 carriers secreted more pathogenic
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proteins, compared to ApoE ɛ4 non-carriers (Fig. 2c, lower). To
examine this in greater depth, we generated iCOs from E3 parental
(E3par) and E4 isogenic (E4iso) iPSCs, and compared them. Similar
to the above-described results, E4iso iCOs exhibited higher levels
of the examined pathogenic proteins, compared to E3par iCOs
(Fig. 2e), with the exception of the total tau levels. We also tested
whether our iCOs had neural activities. Our calcium oscillation
assay revealed that the iCOs showed intracellular changes of cal-
cium signaling. As previous reports found that sAD patients could
have abnormal increases in intracellular calcium with neuronal
hyperactivation24, PiB+ iCOs and E4iso iCOs showed higher cal-
cium fluorescence and more calcium peaks than PiB− iCOs and
E3par iCOs (Fig. 2f, g). This suggested that PiB+ and E4iso iCOs
might have abnormal calcium regulation. Next, we performed
RNA sequencing and compared their overall mRNA expression
patterns. Interestingly, our principal component analysis (PCA)
plot showed that there was ApoE ɛ type-dependent separation
(ApoE ɛ4 non-carriers, green; ApoE ɛ4 carriers, yellow) in the
mRNA expression pattern (Fig. 2h). An exception was the PiB+ #3
iCO, which was an ApoE ɛ4 non-carrier but carried a single-
nucleotide polymorphism (SNP) variant (A288T, G > A) in lipo-
protein lipase (LPL) (Supplementary Fig. 3a, b). It held an ApoE ɛ

type-independent position, but remained well separated from the
PiB− iCOs. Consistent with a previous report25, PiB+ and E4iso

iCOs showed numerous down-regulated DEGs related to synaptic
functions and neurogenesis (Fig. 2i). Furthermore, our tran-
scriptome data was further verified by comparing with public
transcriptome data from the GEO database (Supplementary
Fig. 4). We found a public iPSC-derived neuron data (PIN) for AD
(Accession number: GSE143951, Platform number: GPL16043)
and a human AD brain data (PHB) (Accession number:
GSE109887, Platform number: GPL10904) (Supplementary
Fig. 4a, b). Interestingly, our own transcriptome data had dra-
matically high GO similar to PHB (CC, 64.9% for PiB iCOs and
76.5% for E4 iCOs; BP, 58.7% for PiB iCOs and 26.0% for E4
iCOs; MF, 46.7% for PiB iCOs and 29.4% for E4 iCOs), whereas
PIN had low GO similar to PHB (CC, 7.0% for PIN; BP, 4.2% for
PIN; MF, 8.3% for PIN) (Supplementary Fig. 4c). In addition,
most of the GO terms in Fig. 2i were also included in PHB (21/28,
75%) as significant terms, but were not included in PIN (6/28,
21%) (Supplementary Fig. 4d). Together, our results confirm that
our iCOs had pathological features of AD, and thus could be an
appropriate model reflecting characteristics of the actual disease-
related human brain lesions.

Fig. 1 The overall scheme of this study. To establish drug assessment platform for Alzheimer’s disease (AD), three steps were performed: (i) Generation
of iPSC-derived organoids (iCOs) both from normal and sporadic AD (sAD) participants, and CRISPR-Cas9 ApoE4 isogenic lines were used. (ii) Systems
biology-based AD pathway simulation; Signaling network construction, network model validation, and identification of control nodes steps were conducted.
(iii) Validation of drugs from the simulation; FDA-approved drugs were used, and the degree of AD pathogenesis was quantified by the high-contents
screening (HCS) imaging system. Approximately, 1300 organoids from 11 participants were used for the drug assessment platform. PiB Pittsburgh
compound B, ApoE apolipoprotein E, ELISA enzyme-linked immunosorbent assay, Aβ beta-amyloid, p-tau phosphorylated tau.
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Fig. 2 Generation of sAD iCOs and their pathological features. a Generation of iCOs; 60 days-old iCOs were used for the experiments. b Experimental
iCOs’ sets for this study; The iCOs were from both Pittsburgh compound B (PiB)-PET negative/positive participants’ iPSCs and ApoE3 (parental) /E4
(isogenic) iPSCs, which were generated by CRISPR-Cas9 gene-editing. c Quantification of AD hallmark proteins (Aβ1-42, Aβ1-40, total tau, p-tau) in the
organoid conditioned media was performed between PiB− iCOs and PiB+ iCOs (***p= 0.0003 for Aβ1-42, ****p < 0.0001 for Aβ1-40, *p= 0.0384 for
Aβ1-42/1-40 ratio, **p= 0.0042 for p-tau, ***p= 0.0002 for t-tau, p= 0.1025 for p/t-tau ratio; two-sided p-values; unpaired t-test; Each 3–7 iCOs was
used from n= 8 participants) or between non-E4 carriers and E4 carriers (**p= 0.0020 for Aβ1-42, **p= 0.0082 for Aβ1-40, *p= 0.0370 for Aβ1-42/1-
40 ratio, *p= 0.0125 for p-tau, *p= 0.0173 for t-tau, p= 0.3296 for p/t-tau ratio; two-sided p-values; unpaired t-test; Each 3–7 iCOs was used from n= 4
participants). d Significant correlation was shown between the real human cerebral amyloid deposition (SUVR) and secreted AD hallmark proteins (*p=
0.0190 for Aβ1-42, ****p < 0.0001 for Aβ1-40, *p= 0.0183 for Aβ1-42/1-40 ratio, *p= 0.0407 for p-tau, **p= 0.0042 for t-tau, #p= 0.0550 for p/t-tau
ratio; Pearson’s correlation; isotonic regression curve was shown). e Quantification of AD hallmark proteins (Aβ1-42, Aβ1-40, total tau, p-tau) in the
organoid conditioned media was performed between E4iso iCOs and E3par iCOs (**p= 0.0013 for Aβ1-42, **p= 0.0034 for Aβ1-40, ***p= 0.0007 for
Aβ1-42/1-40 ratio, **p= 0.0094 for p-tau, p= 0.1720 for t-tau, ***p= 0.0003 for p/t-tau ratio; two-sided p-values; unpaired t-test; Each 24 iCOs was
used from E4iso iCOs and E3par iCOs). f, g Comparison of physiological responses of the iCOs (calcium oscillation analysis) was performed between PiB−

iCOs and PiB+ iCOs or E4iso iCOs and E3par iCOs. PiB+ iCOs and E4iso iCOs had more number of peaks than PiB− iCOs and E3par iCOs (*p= 0.0399 for
PiB− iCOs vs PiB+ iCOs, *p = 0.0254 for E4iso iCOs vs E3par iCOs; two-sided p-values; unpaired t-test). h Principal component analysis (PCA) plot
showing transcriptomic expression patterns in RNA sequencing data. i Transcriptomic GO analyses between the PiB− iCOs and PiB+ iCOs or E4iso iCOs
and E3par iCOs were performed with the FDR-adjusted p-value < 0.05 (adjustments were made for multiple comparisons; FDR-corrected by Toppgene
analysis). p-value criteria: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, two-sided p-values, unpaired t-test. PBMC peripheral blood mononuclear
cells, SeV Sendai virus, EB embryoid body, Dor dorsomorphin, SB SB431542, NB neurobasal media, PiB Pittsburgh compound B, CM culture media, sAD
sporadic AD, SUVR standardized uptake value ratio, Aβ beta-amyloid, p-tau phosphorylated tau, MF molecular function, BP biological process, CC cellular
component.
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Pathology validation of iCOs using HCS system. Since we had
only checked the levels of secreted proteins in the conditioned
media in Fig. 2, we need to examine whether iCOs could exhibit
pathological lesions reminiscent of those of real human brain
tissues. We used 3D tissue clearing method to create a uniform
index following a protocol from Vienna Biocenter (VBC) using
ethyl cinnamate (ECi) as an index-matching solution26 (Fig. 3a).
After tissue clearing, iCOs exhibited transparency and were
invisible to the naked eye (Fig. 3b). These procedures were
performed on iCOs of relatively consistent size plated to 96-well
plates, to enable HCS imaging. These methods are described in
detail in the Methods. We checked the levels of Aβ and p-tau,
and found that they were significantly increased in PiB+ iCOs
and E4iso iCOs compared to PiB− iCOs and E3par iCOs (Fig. 3c,
d). The utilized Aβ antibody (D54D2) captures all isoforms of

Aβ, and thus the signals were relatively blurry; however, we
could detect several aggregated Aβ forms and observed that
there was almost no colocalization of the Aβ aggregates with p-
tau deposition (Fig. 3c, d, white arrows). As expected, Aβ
aggregates generally exist in extracellular regions, whereas p-tau
deposition is observed in intracellular regions27. Localization of
the Aβ plaques or tau tangles was further validated by higher
resolution (40X) confocal microscopy imaging (Supplementary
Fig. 5). The images clearly show that amyloid-beta aggregates
are formed in extracellular interstitial spaces, and hyper-
phosphorylated tau colocalizes intracellularly along with neu-
ronal marker MAP2. From these results, we conclude that our
iCOs can undergo effective tissue clearing and HCS imaging,
and thus could be applicable to the large-scale drug-screening
platform.

Fig. 3 Ethyl cinnamate (ECi)-based iCO clearing and ready for the HCS system using iCOs. a ECi-based iCO clearing and HCS imaging workflow.
b Transparency of iCOs after the ECi tissue clearing. c, d Representative 3D organoid imaging using HCS system and 3D imaging technique after ECi-based
tissue clearing procedure. Aβ (red) and p-tau (green) antibodies were used (scale bar, 1 mm) (p-value criteria: #p < 0.1, *p < 0.05, **p < 0.01, and ***p <
0.001; for PiB− iCOs and PiB+ iCOs, ***p= 0.0007 for Aβ, *p= 0.0474 for p-tau; for E4iso iCOs and E3par iCOs, *p= 0.0135 for Aβ, #p= 0.0841 for p-tau;
two-sided p-values; unpaired t-test; 10-20 iCOs were used for each group). White arrows, position of Aβ aggregates in the iCOs; White scale bar, 0.5 mm.
PiB Pittsburgh compound B, Aβ beta-amyloid, p-tau phosphorylated tau, IntDen integrated density.
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Construction of the molecular regulatory network model for
AD. In order to understand the complex dynamics of molecular
interactions in our iCOs with pathological features of AD, we
need to construct a molecular regulatory network model using
systems biology approach. For example, the MAPK signaling
pathway is activated in carriers of the ApoE ɛ4 subtype, which is
reflected by increases in Aβ production28 and CREB expression,
the latter of which prevents synapse loss29. The canonical WNT
signaling pathway delivers an inhibitory signal for GSK-3β, which
is one of the major kinases responsible for phosphorylating tau;
for ApoE ɛ4 subtype, this signaling is decreased by the inter-
nalization of LRP6 from the membrane30. Activation of the non-
canonical WNT signaling pathway increases apoptosis, Aβ pro-
duction, cholesterol production, and the increased autophagy
mediated through JNK and RhoA-ROCK30,31. Activation of the
PI3K-AKT signaling pathway by Reelin and synaptic NMDAR
(N-methyl-D-aspartate) suppresses tau hyperphosphorylation
and apoptotic signaling. Meanwhile, AKT activates mTORC1 to
inhibit autophagy, such that activated AKT subsequently causes
accumulation of Aβ32–34. In this way, numerous signaling path-
ways are involved in the regulatory process of AD through
complicated interactions. Such complexity makes it difficult to
intuitively understand how perturbing a given gene or protein
will affect the accumulation of pathological processes.

We herein developed a relevant mathematical model of the
neuronal molecular regulatory network for AD, with the goal of
enabling researchers to gain a better mechanistic understanding
of AD pathological dynamics at a molecular-regulation level and
systematically investigate candidate molecular targets for their
ability to alter the levels of pathogenic proteins. The procedure of
constructing our network model is described in the Methods. In
our network model, the neuronal intra-cellular molecular path-
ways are mainly composed of MAPK signaling pathway, WNT
signaling pathway, and PI3K-AKT signaling pathway (Fig. 4a).
Genes and proteins are represented as nodes, and interactions
between nodes are represented as activation or inhibitory links
depending on their type of regulation. Network nodes in our
network model and corresponding Boolean logical rules that
govern the state of the nodes are given in Supplementary Data 1.
Our network model includes five output nodes that can represent
the pathological phenotype of AD such as Aβ, p-tau, synapse loss,
apoptosis, and autophagy. Aβ and p-tau node activity refer to the
levels of these pathological proteins, while synapse loss, apoptosis,
and autophagy refer to the degrees of these pathological
phenomena. This network model assumes a normal aging state
when no input is applied.

To validate whether the constructed network model properly
represents the dynamics of AD pathological phenomena, we
performed simulations with different levels of oxidative stress,
mimicking the aging effect. From the simulation results, we can
confirm that our network model can properly reproduce the
pathological input–output relationships35 (Fig. 4b, Supplemen-
tary Fig. 7, Supplementary Methods). For experimental valida-
tion, the list of altered pathways and their tendencies to increase
or decrease was compared36–38 (Supplementary Figs. 8 and 9).
The way of comparing experimental data and simulation results is
explained schematically in Supplementary Fig. 8. In addition, to
validate the specific allele-related alterations of genes and proteins
relative to normal aging, we compared the experimental
literature-based knowledge with our simulation results (Supple-
mentary Table 2). Finally, we completed the construction and
validation of the molecular regulatory network model for AD.

Analysis of the AD network model and identification of can-
didate drugs. We conducted in silico perturbation analysis to

understand the dynamic behavior of network models for ApoE ɛ4
allele (E4iso iCOs) and LPL SNP (LPLA288T SNP), which showed
different pathological features in the previous experiments, and to
identify the regulation of candidate targets which can reduce the
abundance of pathological proteins.

In the presence of the ApoE ɛ4 allele, the canonical WNT
pathway and synaptic NMDAR signaling are down-regulated
while the MAPK pathway is up-regulated which results in
increase of Aβ production through increased APP (amyloid
precursor protein) expression. Moreover, the autophagy-related
signaling pathway is down-regulated through suppressed TFEB,
leading to the accumulation of Aβ and p-tau. The non-canonical
WNT pathway is up-regulated by increased Aβ, which forms a
vicious cycle that increases Aβ production through BACE1
activation. These are consistent with previous biological observa-
tions39–41. In addition, the increased kinase activity of tau
phosphorylation through the up-regulation of Dkk1 and
decreased AKT by Aβ leads to the increase in p-tau production
and apoptosis signal (Supplementary Fig. 10a). In the case of LPL
SNP (reflected as a loss-of-function), the elevated level of
cholesterol results in the increase of Aβ production through
down-regulated activity of α-secretase and up-regulated BACE1
activity and these alterations were observed in biological
experiment42. Furthermore, up-regulated mTORC1 activity
results in the accumulation of Aβ by suppressing autophagy.

In order to identify the optimal candidate targets for lowering
the abundance of Aβ and p-tau, we performed in silico
perturbation analysis (Fig. 5a). For this purpose, we performed
both single-node perturbation pinning only one node and
double-node perturbation pinning two nodes at the same time.
In the attractor landscape obtained after arbitrarily fixing one
node state set to ‘0’, the average activity in the attractor is
multiplied by the ratio of the basin size of the attractor to
represent the node activity (Methods). The activity of the output
nodes was converted to a phenotype score representing the degree
of proximity to the desired state based on the assigned weights
according to the priority of importance for reducing the abundant
levels of Aβ, p-tau, and the degree of neurodegeneration (i.e.,
synapse loss and apoptosis).

From the simulation results, we selected those targets that have
high phenotype scores as far as FDA-approved drugs are available
for drug repositioning to inhibit them, and further analyzed the
alteration of signaling pathways by perturbation of single targets
or double-target combinations (Fig. 5). For instance, in the case of
ApoE ɛ4 allele, the treatment with Flibanserin, an inhibitor of
PTEN, and Ripasudil, an inhibitor of Dkk1, up-regulates the
canonical WNT pathway and down-regulates the non-canonical
WNT pathway (Fig. 5b, top and left). The alteration of these
pathways subsequently decreases the production of Aβ owing to
the increase in α-secretase activity and the decrease in BACE1
activity. In addition, suppression of PTEN inhibits apoptotic
signaling and down-regulates GSK-3β activity through the
activation of AKT (Supplementary Fig. 10b), which consequently
inhibits the production of p-tau. As another example, when
PTEN and mTOR are turned OFF by the treatments with
Flibanserin and Everolimus, respectively, the production of both
Aβ and p-tau is decreased by the elevation of autophagy (Fig. 5b,
top and right), which reflects the mTOR OFF effect and the
aforementioned PTEN OFF effect. As a result, the activities of two
output nodes, Aβ and p-tau that represent pathological proteins,
are decreased for both combinatorial treatments. Taken together,
we suggest that the double-target treatment would be needed for
the case of the ApoE ɛ4 allele since there is no single target that
can simultaneously inhibit Aβ production and synapse loss, and
also up-regulate autophagy. In the case of LPL SNP, the activity of
α-secretase increased by the Ripasudil-triggered suppression of
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Fig. 4 The molecular regulatory network model of AD and its validation. a The molecular regulatory network model of AD was constructed with 77
nodes and 204 regulatory links. The colors of nodes indicate the corresponding KEGG pathways. b Simulation response profiles of the network models
(n= 5) to oxidative stress by varying oxidative stress (ROS) from 0% to 100% over one thousand (n > 1000) independent simulations for each condition
(normal, ApoE ɛ4 allele (APOE4) case, LPL SNP case). Gray solid lines denote 95% confidence intervals around the mean value and each data-point means
independent simulations (error band is so narrow and mostly not distinguishable from the line of mean value). Aβ beta-amyloid, p-tau phosphorylated tau,
APOE apolipoprotein E, LPL lipoprotein lipase.
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the non-canonical WNT pathway and results in the decreased
production of Aβ, whereas the Ripasudil-triggered elevation of
AKT activity suppresses apoptotic signaling (Supplementary
Fig. 10c).

In sum, we could propose candidate drugs based on systems
analysis of the dynamical network model with detailed regulatory

mechanisms. The original usage of the FDA-approved drugs that
were suggested from this analysis and expected to be targeted in
sAD iCOs are listed in Supplementary Table 3.

Validation of our network-based drug-screening platform
using iCOs and HCS. The selection of candidate drugs was done
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according to the following steps (Fig. 6a): (i) output node priority
selection; (ii) target drug selection based on perturbation analysis
and reference to a library of FDA-approved drugs; and (iii)
exclusion of unsuitable candidates based on their drug properties
(BBB penetrability, carcinogen status, etc.). The finally selected
candidates are listed in Fig. 6a. The drugs mainly targeted E4iso

iCOs and PiB+ iCOs with ApoE e4 allele (considering ApoE-
related pathways); some targeted PiB+ #3 iCOs, which had the
LPLA288T SNP (considering LPL-related pathways).

Given the many reports that iCOs exhibit size variations during
their growth, we next sought to minimize the possible variation to
improve their potential utility as drug-treatment targets. We
performed three quality control (QC) steps, and obtained well-
shaped and evenly sized iCOs (Supplementary Fig. 6 and Fig. 6b).
The details of the utilized QC protocol are described in the
Methods. For drug screening, we treated the iCOs with the
selected drugs and monitored the levels of Aβ or tau deposition in
a manner similar to the experiments presented in Fig. 3. We
found that all of the candidate drugs were effective to some degree
in reducing Aβ or tau deposition and in enhancing or
maintaining neuronal cell viability (Fig. 6c–e, Supplementary
Fig. 11). These results, which are summarized in Supplementary
Fig. 12, indicate that we successfully validated our network-based
drug-screening platform by integrating mathematical modeling
and pathological traits of human iCOs. We thus herein introduce
a reliable strategy that could enable precision medicine by
engaging the convergence of mathematical modeling and
pathological features of brain organoids.

Discussion
In this paper, we developed a drug-screening platform and pro-
pose a strategy for the precision medicine by integrating mathe-
matical modeling and human iCOs. Although there are studies
that applied mathematical modeling to AD43,44, no study has
attempted to combine mathematical modeling with human iCOs
that express pathological features of AD. Please note that our
iCOs fully represent sAD conditions because we generated iCOs
from various perspectives, including PiB− iCOs without ApoE ɛ4
allele, PiB+ iCOs with or without ApoE ɛ4 allele, and CRISPR-
Cas9-edited apolipoprotein E (ApoE) ɛ4 isogenic iPSC lines
(E3par and E4iso iCOs) (Fig. 1). Also note that we used a large
number (~1300) of iCO samples in this study, which was suffi-
cient to identify pathological phenotypes and drug responses.

We had to consider the following critical points when estab-
lishing our drug screening model. First, although numerous
studies have already shown the possibility of mechanism-based
understanding and control target discovery through dynamical
modeling45–50 for cancer cells, there were no mathematical
models for the molecular regulatory interactions in the neuron,
which also have complex dynamics that are difficult to intuitively

understand51,52. Therefore, to understand the functional role of
each molecular component and identify mechanism-based con-
trol targets, we needed to investigate the interactions of the
components within the interaction network considering the
dynamics of the molecular network. For these reasons, we
developed and analyzed the neuronal molecular regulatory net-
work and presented the mathematical model of a molecular
regulatory network considering dynamics in the neuron made by
integrating all available experimental evidence. Second, many
researchers have claimed that the homogeneity of testing samples
is important for a highly controlled drug-screening platform53,54.
Since there have been many reports that point out the sample-to-
sample variability of human brain organoids55–58, especially on
their size variations58, the first thing we focused was the way to
control the quality of our iCOs. We performed several steps of
QCs and finally got well-shaped and even-sized iCOs. As shown
in Supplementary Fig. 6, our iCOs had uniform shape and size,
and were optimized for the drug-screening platform. It is
meaningful that our drug screening system suggests a possibility
to utilize iCOs as drug-treatment targets, away from the existing
drug-screening platforms that use only 2D neurons or small 3D
neurospheres (diameter: <300 μm) derived from neural stem cells
(NSCs)59,60. Although one paper showed the HCS system using
human iCOs, they did not check pathological hallmark proteins
such as Aβ or tau deposition or focus on the AD61. Finally, we
tried to apply FDA-approved drugs on our drug screening model
to show the possibilities of drug repositioning and simplify the
drug approval process in preparation for the practical use (Fig. 6).
We narrowed down the candidate drugs from the list of FDA-
approved Drug Library Plus provided by the MedChemExpress
(MCE) company. Although they were not initially developed for
AD, their mechanisms were clearly linked with our mathematical
model’s pathways. Therefore, we could speculate how the drugs
would show effectiveness in reducing Aβ or tau deposition and in
enhancing neuronal cell viability. We found that these drugs are
expected to have effects on AD-related pathways which were
shown in Supplementary Table 3. Thus, we suggested that our
drug screening system is a technologically advanced platform
with highly controlled mathematical model and thoroughly
validated samples.

Our current study has several limitations worth noting. This
network model assumes an initial state with little neuronal loss.
Therefore, the adjustment of network model by disease stage is
necessary. In addition, since it is a network model that consist of
limited and only observable experimental information, con-
sidering the quality of data that will be developed in the future, it
will be possible to create a more complex, emergent decision
network that can be analyzed in an advanced manner. Next,
even though we generated iCOs from iPSCs as a biomimetic
mini-brain, microglial population cannot emerge embryologically

Fig. 5 Perturbation analysis-based selection of candidate drug targets using attractor landscape analysis. aWorkflow for risk factor (ApoE ɛ4 allele and
LPL SNP)-specific candidate drug target selection. Disease models, such as ApoE ɛ4 allele case and LPL SNP case, are represented by differentially wired
networks that have a distinct network topology by mapping their risk factors in a disease model onto the normal state model. Network dynamics induced
by a node perturbation can be analyzed by an attractor landscape which consists of the trajectories from 106 initial states to the attractor states. Each node
perturbation eventually reaches the attractor states that correspond to specific cellular phenotypes. The area around each attractor state is the region of
states with trajectories converging to the attractor, which is called the “basin of attraction” or “basins”, and can be used for measuring the relative stability
of the specific cellular phenotypes, including Aβ, p-tau, apoptosis, synapse loss, and autophagy. The overall cellular state for a specific node perturbation is
defined by a phenotype score which measures the sum of products that multiply the basin ratio of attractors belonging to same cellular phenotype and the
distinct weight corresponding to the specific cellular phenotype (Aβ:30, p-tau:30, synapse loss:20, apoptosis:10, autophagy:10). The phenotype score
ranges from 0 to 100 and is used to estimate the pathological level. b Schematic diagram of the predicted perturbation effect of the high-rank FDA-
approved drugs on the activities of signaling pathways for ApoE ɛ4 allele case (upper row) and LPL SNP case (lower row). The color of each pathway
represents its activity change by drug treatment (i.e., red for induction and blue for suppression), and the color of arrow represents the pathway effect on
phenotypes. APOE apolipoprotein E, iCO iPSC-derived cerebral organoid, Aβ beta-amyloid, p-tau phosphorylated tau, LPL lipoprotein lipase.
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during the developmental process of iCOs because their origin
has been known as yolk-sac while it is a matter of debate62. Since
microglia have also critical roles in the immune responses of the
human brain63, our drug screening model was unable to deal with
inflammation-related drug responses. Further research through
mixed-culture of iPSC-derived microglia and iCOs could help us
find a way to create more accurate drug screening system com-
bined with the mathematical modeling. Moreover, we could
further proceed to mechanistic studies using large quantities of
our iCOs to verify the specific pathways associated with the drug
candidates, as well as quantitative identification of Aβ/tau
deposition or neuronal cell death. In particular, canonical and

non-canonical WNT pathway and autophagy-related pathways
were signified in our mathematical model. Therefore, these
pathway-molecules such as PTEN, Dkk1, RhoA, ROCK (related
to non-canonical WNT pathway) and mTOR, ULK1 (related to
autophagy pathway) have to be further validated.

In conclusion, we provide a powerful tool for the development
of the AD drugs by our network-based drug-screening platform
through the integration of mathematical modeling and the
pathological features of human iCOs, which are derived from the
sporadic AD patients. With further generation of the iCOs from
various types of AD patients, our approach may propose strate-
gies for the precision medicine therapy.
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Methods
Recruitment of participants and brain amyloid imaging. For the generation of
induced pluripotent stem cells (iPSCs) and iCOs, 10 participants were recruited.
Detailed information on the participants is presented in Supplementary Table 1.
Each participant underwent simultaneous 3D 11C-Pittsburgh compound B posi-
tron emission tomography (PiB-PET) and MRI using a 3.0 T PET-MR scanner
(Siemens Healthineers) for brain amyloid imaging. The methods used to obtain
and process the patients’ imaging data are described in our previous paper, in
which the characteristics of our recruited participants were further summarized4,64.

Human iPSCs and iCOs. Detailed methods for generation, maintenance, and
characterization of both iPSCs and iCOs are provided in the Supplementary
Methods.

Ethyl-cinnamate (ECi) 3D tissue clearing. We followed a previously published
protocol26 with minor adjustments for use with a 96-well plate. Detailed methods
for ECi 3D tissue clearing for iCOs are provided in the Supplementary Methods.

High-content screening 3D confocal image acquisition and analysis. Images
were acquired using an ImageXpress Micro Confocal High-Content Imaging
System (Molecular Devices) with a 4X Plan Apo objective. A total of 25 planes were
acquired in 50-μm intervals that covered the whole organoid. All images and their
maximum projection images were used for quantification of fluorescence. Images
were analyzed using the MetaXpress High-Content Image Acquisition and Analysis
Software (Molecular Devices). The following organoid modules were used to
characterize each sample: (i) Source, Open Close with the circle filter shape; (ii)
Adaptive Threshold: TexasRed Segmentation; and (iii) approximate width from
300 to 3000 μm. Samples that did not meet the predefined standards were excluded
from further analyses. The iCOs were further quality-controlled for HCS acquisi-
tion and analysis (see below).

Drug treatment. For drug treatment, detailed information on concentrations is
shown in Fig. 6 and is provided in Supplementary Methods.

Quality controls of iCOs for drug screening. First, high-quality embryoid bodies
(EBs) were selected on Day 7 and seeded to the ultra-low-attachment 96-well
plates. Second, on Day 60, high-quality (less size-variation) iCOs were selected and
re-seeded. Third, during the HCS imaging, automatic QCs were performed with
the following exclusion criteria: (i) shape factor score <0.7; (ii) diameter length
<1000 μm or >1400 μm; and (iii) average area of iCOs < 700,000 μm2. Supple-
mentary Fig. 6 shows these QC steps.

Immunocytochemistry and immunohistochemistry. Detailed methods for
immunocytochemistry and immunohistochemistry for both iPSCs and iCOs are
provided in the Supplementary Methods.

Cell viability assay. To check cell viability for iCOs, we performed 3-(4,5-dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for iCOs with
minor modification of the method from our previous report65. In detail, 0.9 mg/ml
of MTT (475989, Sigma) in opti-MEM was treated and the plates were incubated
for 2 h at 37 °C. After that, medium was fully removed and isopropanol was added
and incubated again for 2 h at 37 °C. When formazan crystals were dissolved in the
isopropanol solution, absorbance was measured at 540 nm.

Quantification of secreted protein levels in the conditioned medium. To
analyze protein secretion under the serum-deprived condition, the culture medium
was changed to Opti-MEM and samples were incubated at 37 °C under 5% CO2 for
12 h. The culture medium was collected and centrifuged at 3000g for 10 min at
4 °C, and the supernatant was collected and stored at −80 °C. The proteins levels of
Aβ1-40 (27713, IBL), Aβ1-42 (27711, IBL), phospho-tau (pT181) (KHO0631,
Invitrogen), and total-tau (KHB0041, Invitrogen) were measured by enzyme-linked
immunosorbent assay (ELISA) according to manufacturer’s instructions. BCA
analysis was performed with the same samples, and the data were normalized by
the total protein content. Levels of Aβs secreted from E3par and E4iso iCOs were
further measured using xMAP technology (Bioplex 200 systems). The utilized
protocol is also described in our previous paper66.

Reverse transcriptase quantitative PCR (RT-qPCR). Detailed methods for RT-
qPCR are provided in the Supplementary Methods.

Calcium oscillation analysis with the FLIPR calcium 6 assay. Detailed methods
for FLIPR Calcium 6 assay are provided in the Supplementary Methods.

RNA sequencing, differentially expressed genes, and gene ontology analysis.
Detailed methods for RNA sequencing, DEGs, and GO analysis are provided in the
Supplementary Methods. RNA sequencing data is available at NCBI under SRA
accession number PRJNA678865. To analyze public transcriptome data (Accession
number: GSE143951, GSE109887; Platform number: GPL16043, GPL10904)67,68,
GEO2R analyzer (https://www.ncbi.nlm.nih.gov/geo/geo2r) was used.

Construction of Alzheimer’s disease molecular regulatory network. The net-
work structure was constructed based on major signaling pathways related to AD
by integrating information from public databases, such as Kyoto Encyclopedia of
Genes and Genomes (KEGG)69 and AlzPathway70, and also by an extensive survey
of relevant experimental data on neuronal cells. In our study, we focused on APOE
ɛ4 allele, LPL-related signaling pathways in line with experimental results of this
study. Through a literature-based investigation, we constructed a model network
mainly from MAPK, WNT, and mTOR signaling pathways, and also, we con-
sidered other signaling pathways such as Notch, RELN, Jak/Stat, and Ca2+. In
particular, our network model assumes a normal aging state and is constructed in
consideration of those pathways relevant for ApoE ɛ4 allele and LPL. Genes and
signaling proteins were represented by nodes, and a physical or chemical inter-
action between nodes was represented by a link. Our network model consists of 77
nodes and 204 links.

Mathematical modeling. We constructed a mathematical model by employing
Boolean network modeling71 and using the regulatory information of the genes and
proteins in the context of neuronal cells72,73. In our network model, the state values of
each node can be either 0 or 1, representing ‘OFF’ or ‘ON’ state of the gene/protein
activity, respectively. Each node state is updated synchronously according to the
logical rule which was established based on experimental data from the literature. We
used R package ‘BoolNet’ for the Boolean simulation74. The network state is deter-
mined by a set of node states. All the network states eventually converge to a stable
state which is called an ‘attractor’ representing a particular biological phenotype75,76.
The set of all initial states converging to a particular attractor is called the ‘basin of
attraction’ of the attractor. Due to the high computational cost of simulating all initial
states, we randomly sampled one million initial states. We confirmed that the main
results were not sensitive to the randomly selected initial states through repeated
sampling process. The Boolean functions of our model were written in accordance

Fig. 6 Validation of our network-based drug-screening platform. a The flow-chart of the drug selection steps; six FDA-approved single or combination
drugs were selected (for E4iso iCOs: Astaxanthin, Ibrutinib+Imipramine, Flibanserin+Everolimus, Ripasudil+Flibanserin; for LPLmut iCOs: Ripasudil,
Ripasudil+Abemaciclib-methanesulfonate) and five inappropriate therapies (Danthron+Venetoclax and Danthron+Nicotinamide, possible carcinogen;
Fenofibric acid and Rosiglitazone, poor BBB penetration rate; Clinofibrate, unknown BBB penetration) were excluded from the list. It is also not known
whether Ripasudil is BBB permeable, however, it is included as a candidate because of its possible role in brain health (enhance BBB integrity). b The QC
steps of iCOs. The high-quality iCOs were manually or automatically selected and used for the drug screening. c-e A large-scale drug screening results
from our network-based drug-screening platform. E4iso iCOs, PiB+ #5 iCOs, and LPLA288T iCOs (PiB+ #3) were used for the screening. p-value criteria:
&p < 0.1 for unpaired t-test (two-sided p-values), #p < 0.05 for unpaired t-test (two-sided p-values), *p < 0.05 and **p < 0.01, ANOVA with the correction
of Tukey post hoc test for multiple comparisons. For Aβ of E4iso iCOs, &p= 0.0578, #p= 0.0471, #p= 0.0109; For p-tau of E4iso iCOs, **p= 0.0065, *p=
0.0306, #p= 0.0120, &p= 0.0594, &p= 0.0776, #p= 0.0157, **p= 0.0089, #p= 0.0140, #p= 0.0449, #p= 0.0111, &p= 0.0622; For Aβ of PiB+ #5
iCOs, *p= 0.0440, #p= 0.0491, *p= 0.0342, &p= 0.0664, *p= 0.0232, *p= 0.0234, **p= 0.0021; For p-tau of PiB+ #5 iCOs, #p= 0.0480, &p=
0.0842, **p= 0.0043, #p= 0.0365; For Aβ of LPLA288T iCOs, #p= 0.0180, &p= 0.0831; For p-tau of LPLA288T iCOs, #p= 0.0347, *p= 0.0164, &p=
0.0512, &p= 0.0546 (in order from left to right, top to bottom). Each color indicates different types of candidate drug. Effective drug concentration points
(P1 to P4) are shown in tables. n= 6 iCOs were used for each concentration point (P1 to P4). Data are presented as mean values ± standard error of mean
(SEM). APOE apolipoprotein E, iCO iPSC-derived cerebral organoid, Aβ beta-amyloid, p-tau phosphorylated tau, LPL lipoprotein lipase, QC quality control,
Conc. concentration, A-meth.sulfonate Abemaciclib methanesulfonate.
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with the BoolNet format, and they were converted to SBML-qual77 format using
BioLQM v0.6.178. In addition, the SBML file and R code for simulation are available
at: https://doi.org/10.5281/zenodo.4259960.

Attractor landscape analysis. Attractor landscape is the landscape of all attractors
that can exist on a given network model and the set of initial states converging into
each attractor. Using attractor landscape information, we calculate node activities
by averaging attractor states weighted by their basin sizes. Each node activity
represents the expression level or activity level of gene or protein, respectively.
Thus, we can use these node activity calculations to estimate perturbation effects in
silico. For example, if A node’s activity level is increased when B node is perturbed,
we can consider the A node’s activity level change as the perturbation effect of the
B node perturbation on A node.

Input–output relationships of the network model. Detailed methods for
input–output relationships for the network model are provided in the Supple-
mentary Methods.

Statistical analysis of experimental data. MedCalc 17.2 (MedCalc Software,
Ostend, Belgium) and GraphPad Prism 8 (GraphPad Software, CA, USA) were
used for data analyses. The numerical data were tested using ANOVA with Tukey’s
post hoc test or independent t-test. The relationship between variables was
determined by Pearson’s correlation analysis.

Ethical approval. Approval for the study was obtained from the Institutional
Review Board of Seoul National University Hospital, South Korea. Participants or
their legal guardians provided written informed consent.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed are available from the corresponding author upon
appropriate request. The RNA sequencing data from this study (related to Figs. 2, 4, 5,
and Supplementary Figs. 2, 4, 8, 9) are available at NCBI under SRA accession number
PRJNA678865. The public transcriptome data that support the findings of this study
(related to Supplementary Fig. 4) are available in GEO2R public database (Accession
number: GSE143951 and GSE109887).

Code availability
The computer codes used to perturbation analysis are available from GitHub (https://doi.
org/10.5281/zenodo.4259960).
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