
REVIEW ARTICLE OPEN

Critical transition and reversion of tumorigenesis
Dongkwan Shin1,2 and Kwang-Hyun Cho1✉

© The Author(s) 2023

Cancer is caused by the accumulation of genetic alterations and therefore has been historically considered to be irreversible.
Intriguingly, several studies have reported that cancer cells can be reversed to be normal cells under certain circumstances. Despite
these experimental observations, conceptual and theoretical frameworks that explain these phenomena and enable their
exploration in a systematic way are lacking. In this review, we provide an overview of cancer reversion studies and describe recent
advancements in systems biological approaches based on attractor landscape analysis. We suggest that the critical transition in
tumorigenesis is an important clue for achieving cancer reversion. During tumorigenesis, a critical transition may occur at a tipping
point, where cells undergo abrupt changes and reach a new equilibrium state that is determined by complex intracellular
regulatory events. We introduce a conceptual framework based on attractor landscapes through which we can investigate the
critical transition in tumorigenesis and induce its reversion by combining intracellular molecular perturbation and extracellular
signaling controls. Finally, we present a cancer reversion therapy approach that may be a paradigm-changing alternative to current
cancer cell-killing therapies.
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INTRODUCTION
Cancer is generally caused by genetic alterations that cannot be
reversed, such as somatic mutations of oncogenes or tumor-
suppressor genes. Therefore, tumorigenesis is considered irrever-
sible. However, cancer cells in normal microenvironments have
been shown to revert spontaneously to nonmalignant cells1. In
1907, Askanazy reported the phenomenon of tumor reversion:
Ovarian teratomas in the embryonic microenvironment evolved
spontaneously into differentiated normal cells2. Similar findings
have been reported in plants, fish, and other organisms,
demonstrating that tumor cells can be reprogrammed to acquire
a phenotype resembling healthy, normal cells3. The experimental
and clinical evidence supporting a strategy of reverting cancer
cells into normal cells by inducing permanent differentiation has
been reported. The most critical experiment supporting cancer
cell reversion was performed by Mintz et al., who showed that
teratocarcinoma cells injected into blastocysts contributed to
normal embryonic development, generating normal organs and
tissues4. Other attempts to induce the differentiation of acute
promyelocytic leukemia (APL) cells, not killing them, were made in
the 1970s. On the basis of the results, the use of all-trans retinoic
acid (ATRA) with arsenic trioxide (ATO) in treating APL has
markedly improved the clinical outcome of APL patients and
resulted in cure rates higher than 95%5–8. Although differentiation
therapy has proven successful in APL, many challenges remain in
treating solid tumors with reversion therapy. Most solid tumors are
generally characterized by multiple oncogenic signaling pathways
and cooperation among these pathways, considerably complicat-
ing the effectiveness of differentiation therapy in solid tumors
compared to its efficacy against leukemia. Tumor reversion
research in the era of molecular biology has focused on the

restoration of the normal version of a mutated oncogene or
function of a tumor suppressor or the discovery of target
molecules that can restore the function of altered phenotypes
caused by cancer-driving mutation. Colorectal tumorigenesis can
be reversed by restoring the normal function of the aberrantly
inactivated tumor suppressor gene APC9. Telerman et al. described
the reversal of malignancy by blocking the expression of specific
genes, such as the gene encoding transcriptionally controlled
tumor protein (TCTP)10. Inhibition of TCTP expression repro-
grammed p53-mutant leukemia and solid tumor cell lines into
“revertant” cells with a suppressed malignant phenotype11.
Although sporadic phenomenological tumor reversion has been
observed in experiments, no systematic approach to understand
the mechanisms underlying tumor reversion or to identify
molecular targets to restore normal phenotypes to tumor cells
has been reported.
A series of studies showing how somatic mutations accumulate

during cancer development have important implications for
cancer reversion. Martincorena et al. showed that normal cells in
sun-exposed skin or esophageal epithelium harbor many cancer-
driving mutations but maintain the physiological functions of the
epidermis12,13. Kaufman et al. demonstrated that, within a
cancerized field in which all melanocytes harbored both
oncogenic BRAF (V600E) and p53 loss, only a single melanocyte
showed a reactivated neural crest progenitor (NCP) state, leading
to melanoma initiation via activation of superenhancers at NCP
genes14. These findings implied that cancer may arise when the
accumulation of genetic alterations is accompanied by additional
network rewiring, such as epigenetic alterations. It also implies
that cells carrying cancer-causing mutations can be repro-
grammed to a normal-like state via network modification. Thus,
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we propose that reversion can occur if complementary network
rewiring can be induced in cancer cells.
Many cellular functions are governed by a genome-wide

regulatory network that consists of tens of thousands of genes.
Furthermore, the behaviors of cancer cells are not regulated by a
linear combination of critical genetic alterations but by profound
nonlinear cross-regulation between signaling pathways that have
been dysregulated because of genetic alterations. In principle,
normal phenotypes can be restored by activating bypass or
complementary signaling pathways of the complex molecular
interaction network to circumvent networks impaired by cancer-
causing mutations. In this review, we explore the underlying
principle hidden in irreversible transition during the development
of cancer and propose a novel theoretical framework for driving
cancer reversion based on pharmacological manipulation of the
molecular regulatory network involved in cancer and the
corresponding attractor landscape. By applying this framework
to single-cell data, we propose a system-level approach to identify
the molecular candidates that regulate cancer reversion and
through which dysregulated cell signaling pathways can be
rewired and the hallmarks of cancer can be redressed to re-
establish normal phenotypes.

CANCER REVERSION: REVERTING TO A NORMAL PHENOTYPE
The process of cancer reversion, in a broad sense, involves a
cellular reprogramming mechanism by which cancer cells lose
their malignant properties and acquire the phenotypic character-
istics of normal cells, resulting in the suppression of malignancy.
Several perspectives on cancer reversion have been proposed, and
they differ primarily with respect to the normal cellular phenotype
that has been emphasized (Fig. 1). Telerman et al. introduced three
theoretical models of cancer cell reversion10: (i) a single event
model, in which restoration of a key event involved in the original
transformation induces tumor reversion; (ii) a bypass model, in
which multiple events target alternative signaling pathways
outside of the original transforming pathway for tumor reversion;
(iii) a comprehensive model, in which tumor reversion drives
cancer cells to transition into a new non-malignant state that is
different from the original normal state. For example, malignant
cells have been reprogrammed into a new state via the inhibition
of TCTP or the overexpression of SIAH-1, which are downstream of
inactivated p5311. Recently, Lee et al. showed the reprogramming
colorectal cancer cells into differentiated normal-like cells by
depleting a key regulator, set domain bifurcated 1 (SETDB1), which
restored the function of five master regulators that reactivate
normal tissue-specific gene expression programs15. In contrast, to
the manipulation of genes expression in cancer cells, the plasticity
of cancer cells can be leveraged to stimulate reversion or
reprogramming through extrinsic factors16. Examples of external
factors that have reprogrammed cancer cells include the
embryonic mesenchyme, the extracellular matrix (ECM), and
fibroblasts from normal adult tissue and signaling by adipocytes
or mesenchymal cells16. In some cases, extrinsic signals promote a
differentiated state with less malignant properties. However,
cancer cell plasticity increases the possibility that a nonmalignant
revertant cell can be reversed to a malignant state. On the basis of
this concept, Pollack insisted that the most crucial feature of true
cancer reversion to a nonmalignant is stability and that stable
reversion strategies are superior to strategies that induce
differentiation17. Partial cancer reversion is an outcome when
revertant cells retain certain malignant characteristics. For example,
some revertant cells may show suppressed proliferation but
continue to exhibit anchorage-independent growth18. Complete
cancer reversion occurs only when revertant cells exhibit both
growth factor dependency and anchorage-dependent growth.
Tumor initiation and progression depend on interactions

between a prospective cancer cell and its microenvironment, as

well as somatic mutations in the prospective cancer cell.
Cell–microenvironment interactions play critical roles in cell fate
change by, for example, inducing cellular reprogramming, tumor
initiation, cancer metastasis, and cancer reversion19–21. Although
adult somatic cells can be efficiently reprogrammed into induced
pluripotent stem cells (iPSCs) and then redifferentiated to acquire
a specific phenotype22, in iPSCs placed in the ‘wrong’ environ-
ment, reprogramming is terminated, leading to tumor develop-
ment in various tissues23. In contrast, cancer cells seeded in the
presence of their normal counterparts24 or placed in normal
tissues25 can be reprogrammed to acquire a normal phenotype.
Cancer cell plasticity is exemplified by the state transitions that

enable the metastasis of solid tumors. Many solid tumors arise in
epithelial tissues. To become malignant, epithelial cancer cells
undergo a transition to a mesenchymal state in a process referred
to as the epithelial-to-mesenchymal transition (EMT). Upon
reaching a secondary site, cells undergo the opposite transition,
the mesenchymal-to-epithelial transition (MET). Bizzarri et al.
stressed the relevance of cell–microenvironment interplay in
cancer reversion and suggested that the phenotype of a cancer
cell can be reversed by properly modifying this interplay to induce
the MET by inhibiting the expression of transcription factors
related to the EMT19–21. Thus, it is important not only to restore
the phenotype of cancer cells to that of normal cells but also to
manage the extracellular environment to ensure that revertant
cells maintain a normal phenotype.
The first step in systemic cancer reversion is the identification of

the state of normal or cancer cells and understanding the
transitions between them. Although cell states are often
characterized by measuring the levels of a small number of key
marker genes that are highly correlated with cellular functions,
recent high-throughput technologies such as single-cell sequen-
cing have enabled the discovery of characteristic molecules to be
greatly expanded26. Cells respond to various environmental
stimuli through a molecular regulatory network consisting of
signaling proteins, transcription factors, and genes. Therefore, the
state of a cell at time t may be represented by the activities of
thousands of molecules, for example, N genes, at time t,
x tð Þ ¼ ðx1 tð Þ; x2 tð Þ; ¼ ; xN tð ÞÞ, and corresponds to a point in an
N-dimensional gene expression state space. Therefore, a network
state is determined by the underlying gene regulatory network. As
a consequence of gene regulatory interactions, a cell state evolves
over time with changes in gene expression in a nonlinear time-
varying function of all the genes in the network,
_x tð Þ ¼ Fðx1 tð Þ; x2 tð Þ; ¼ ; xN tð ÞÞ, toward a particular convergence
state (or a set of states) in the state space, which is called the
attractor state (see ref. 27 for a comprehensive review on the
attractor landscape analysis of gene regulatory networks). Huang
et al. experimentally demonstrated that a stable attractor state of
a gene regulatory network corresponds to a unique cell
phenotype; specifically, the differentiation of human promyelocy-
tic HL60 cells converged to a common neutrophil-like state that
was reached via different trajectories in response to different
stimuli28 (Fig. 2a). Waddington’s epigenetic landscape29, a simple
and elegant metaphor explaining cell differentiation, is useful for
understanding transitions between distinct cell states in a high-
dimensional state space. In this metaphor, a particular cell type
corresponds to each valley in a hilly epigenetic landscape, and
therefore, the cells located in different valleys represent different
phenotypic distribution patterns across the surface of the so-
called attractor landscape, where each attractor represents a
distinct cell phenotype and where the basin (i.e., converging area)
of an attractor denotes the probability of convergence on a
particular cell phenotype (Fig. 2a).
The abnormal phenotypes of cancer cells, such as uncontrolled

proliferation and stimulated angiogenesis, can be represented by
attractors in the epigenetic landscape30. Because each network
architecture is uniquely mapped to one attractor landscape,
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somatic mutations or drug perturbations induce changes in the
attractor landscape. Tracing and controlling these changes enable
us to gain a deeper understanding of the development of cancer
and identify strategies to reverse cancer cells into cells with a
normal state. Notably, there have been many attempts to apply
attractor landscape analysis to cancer therapy3,31–36. The attractor
analysis of p53 network dynamics suggested that combined
inhibition of specific components in the network enhance the
apoptotic response to DNA damage31,36. Recent efforts have been
directed to a control-based reversal of irreversible biological
processes, including cancer, by manipulating the attractor land-
scapes of cellular networks32–35. The simulation analysis of a large-
scale Boolean network model of colorectal cancer showed that the
identified molecular targets of the reverse control were highly
enriched in approved anticancer drug targets33,34. In a recent
network analysis of breast cancer, potential targets for reprogram-
ming basal-like breast cancer cells into luminal A subtype cells
were identified and validated by experiments32. These efforts to
find cancer reversion targets based on attractor landscape analysis
have led to insights that indicate differences between cancer cell
reversion and current cancer therapies aimed only at killing cancer
cells. Nevertheless, these approaches are fundamentally limited
since the analyses were mostly focused on cancer cells without
fully analyzing the state of the normal cells, which are the cells
obtained after the application of the cancer reversion strategy.
Therefore, previous efforts to identify targets for cancer reversion
by changing the shape of the attractor landscape of cancer, for
instance, by increasing the basin of the apoptosis attractor and

decreasing the basin of the proliferation attractor, likely resulted in
the nonoptimal identification of either anticancer targets or
reversion targets. Next, we introduce the critical transition in
tumorigenesis and suggest new ways to overcome the aforemen-
tioned limitations of previous studies based on attractor analysis.

CRITICAL TRANSITION IN TUMORIGENESIS
During the transformation of a normal cell to a cancer cell through
somatic mutations, signaling pathways and gene regulatory
networks are altered. This network rewiring drives cancer cells
to exhibit abnormal or malignant phenotypic characteristics.
When evaluated in the context of an epigenetic landscape, cancer
cells, and normal cells exhibit completely different attractor
landscape patterns (Fig. 2b). An attractor state (a stable cell state)
typically requires feedback loops to function in the underlying
molecular regulatory network37,38. For example, positive feedback
loops can generate multistability, resulting in different phenotype
states39–41. Complex biological networks composed of abundant
interconnected feedback loops often cause multistability, as well
as inherent nonlinearity and functional redundancy. These
features contribute to cell homeostasis, enabling a cell to
consistently return to a stable state in response to external
changes. However, these homeostatic mechanisms can induce a
sudden change in the cell state in response to gradual changes in
external conditions, such that at a certain tipping point, a cell
enters a different stable state (Fig. 3a). Therefore, switching
between two stable cell states, such as between normal and

Fig. 1 Several perspectives on cancer reversion. The left side shows two methods for manipulating cancer cells to achieve reversion to a
nonmalignant phenotype. The right side shows two methods for using external mechanisms to revert cells to a nonmalignant state.
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cancer cell states, may represent a critical transition from one
attractor to another attractor in the epigenetic landscape42.
A critical transition is a concept established in physics and

chemistry and is observed mainly in ecosystems, climates, and
social systems. A feature of a critical transition is a “critical slowing
down” phenomenon, in which the recovery of the system to the
original stable state after perturbations is slowed because the
original state becomes increasingly unstable as the system
approaches the critical point (Fig. 3b). Therefore, near the tipping
point, the system exhibits alternative stable states, meaning that
the system can function in more than one stable state under the
same external condition. Using data from single-cell analysis, the
concept of a critical transition or tipping point has been applied to
complex biological processes, such as differentiation or tumor-
igenesis43. For example, during the commitment of blood
progenitor cells to an erythroid or myeloid lineage, cells undergo
a critical state transition preceded by the destabilization of their
attractor state in the high-dimensional state space44. Mojtahedi
et al. introduced a new quantitative index to detect critical
transitions in a high-dimensional state space. The index is based
on important features identifiable at the tipping point, such as a
reduction in cell‒cell correlation and an increase in gene‒gene
correlation44. A single-cell proteome study in cells undergoing
carcinogen-induced tumorigenesis suggested a critical transition
during tumorigenesis45, with Poovathingal et al. observing phase
coexistence and divergent correlation lengths, which are statistical
indicators of a critical transition. Although a critical transition in a
biological process may imply that tumorigenesis is irreversible and
that cells cannot return to the original state on the tumor
evolutionary trajectory, the critical transition point may provide
clues into the mechanisms by which the original phenotype can
be restored35. At the tipping point, initial and final states can
coexist. Hence, knowledge of the tipping point during cancer

development can provide critical information for cancer reversion
to a normal cell state.
Conventional anticancer treatment studies have been con-

ducted with advanced tumor cells. However, these cells do not
provide sufficient information on the precancerous state of the
cells or the mechanisms underlying the transition to the cancer
cell state. Without this information, researchers can only block
proliferation or induce cell death to control cancer progression or
regression. By identifying and understanding the tipping point of
a critical transition, we can conceptually explore different
strategies to control cancer progression or regression through
cancer reversion.

CANCER REVERSION BASED ON THE CRITICAL TRANSITION IN
TUMORIGENESIS
Cancer is an extremely complex disease that exhibits a high level
of protection against external perturbations. This protection from
perturbation enables cancer cells to proliferate and survive
despite treatment. Using the attractor landscape paradigm, cancer
cells are represented by cells in a stable attractor state of a
complex dynamic system. Therefore, the transition from the
attractor state of a normal cell to the attractor state of a cancer cell
represents a critical transition (Fig. 3c). Viewing tumorigenesis as a
critical transition may provide new insight into the development
of different kinds of drugs and therapies based on cancer
reversion. One of the characteristics of a critical transition is that
when approaching a tipping point, the system is extremely
sensitive to miniscule changes in environmental conditions.
Cancer cells harbor many somatic mutations, but only a few
critical “driver” mutations contribute to cancer formation; the
others are considered “passenger” mutations46,47. Driver muta-
tions confer a selective advantage to a cancer cell by inducing a

Fig. 2 Attractor landscapes of normal and cancer cells. a Representation of attractor states within the epigenetic landscape of
hematopoietic cells undergoing differentiation. b The phenotypic properties of cells can be viewed as attractor landscapes of molecular
regulatory networks, including signaling pathways and gene regulatory networks. Cancer cells and normal cells exhibit different attractor
landscapes due to network rewiring mediated by somatic mutations, such as the increase in the size of the proliferation-related basin of
attraction. Therefore, normal and cancer cells are represented as distinct valleys in an epigenetic landscape. A apoptosis, P proliferation, Q
quiescence.
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dramatic change that affects the entire molecular interaction
network48. After entering a robust cell state through a critical
transition, cancer cells maintain the acquired state even after the
withdrawal of the driving sources that induced tumor formation
because of a high barrier in the potential energy between normal
and cancer cell states. Therefore, for a cell to return to its original
stable (normal) state after it has acquired a stable cancer state
phenotype, sufficient external changes or stimuli are required to
push the system across the transition threshold (a tipping point
along the backward path) toward the original state (Fig. 3d). In
other words, the network rewiring used to induce the backward
transition from the cancer states needs to overwhelm the effects
of the driver mutations that caused tumorigenesis.
Because cell in two distinct states can coexist around a tipping

point during a critical transition, we propose a two-step strategy for

inducing cancer reversion. The first step is to drive cancer cells back
to the bistable state near the tipping point by targeting molecules
in intracellular molecular networks that can reshape the attractor
landscape of the cancer state. In the attractor landscape, this
reshaping involves a decrease in the basin size of proliferative
attractors and an increase in the basin size of apoptotic attractors.
The state of a cell in a bistable state can be changed via stochastic
fluctuations that cause the cell to jump to an adjacent state without
requiring network parameter changes because of the low potential
energy barrier. Thus, cells can stochastically fluctuate between
normal and cancer states43. The second step is to drive the bistable
state in a single direction—allowing only the cancer-to-normal
transition while blocking the normal-to-cancer transition.
The basis of a two-step process for cancer reversion can be

explained by tracing changes in the epigenetic landscape, the

Fig. 3 Critical transition in tumorigenesis and cancer reversion. a Epigenetic landscape and critical transition. The state of a dynamic system
is represented by the position of a ball on a quasipotential landscape, with valleys corresponding to the basins of attraction of the stable
states in the system. Changing the condition via environmental perturbation leads to the modification of the landscape, changing it from one
with healthy to one with unhealthy phenotypes. Solid circles represent cells occupying the attractor state, whereas blank circles represent
cells that are likely to occupy the state induced by certain perturbations or stochastic noise. b The response of a cell to perturbations near the
tipping point (top) or far from the tipping point (bottom). c, d Critical transition in tumorigenesis (c) and two-step strategy for cancer reversion
(d). Changes in the epigenetic landscape are illustrated along the paths. N normal, C cancer.
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attractor landscape of normal and cancer cells, and the stability of
cancer-related attractors during the cancer initiation process and
the reverse process (Fig. 4). A well-balanced distribution of
phenotypes, such as proliferation and cell death, is maintained in
the attractor landscape of normal cells, whereas in cancer cells, the
basin of attraction associated with a cancer hallmark, such as
uncontrolled proliferation, may be a large proportion of the
attractor landscape. The attractor landscape of a transition state,
where normal and cancer cell states may coexist, can be viewed as
a conditional framework in which two landscapes, those of the
normal and cancer cell states, are in such close proximity that cells

can undergo a stochastic transition between these two landscapes
(Fig. 4a). Therefore, a snapshot of a transition state after the first
reversion step may show two types of cells in each valley and
these cells may correspond to normal and cancer cell states in the
epigenetic landscape. Since this state (D in Fig. 4b) is expected to
be closer to the normal state than to the tumorigenesis tipping
point (B in Fig. 4b), the attractor landscape at a population level is
likely to exhibit a phenotype distribution similar to that of the
normal cell state, except that the barrier between the attractors of
cell death and proliferation is low, implying that a cell population
may develop into cancer cells (see D in Fig. 4c). In addition, the

Fig. 4 Attractor landscapes of normal and cancer cells during tumorigenesis and cancer reversion. a Attractor landscapes of normal,
cancer, and transition states. Circles represent network states of a cell. In a transition state, a network state of an attractor landscape can jump
to the same network state in an adjacent landscape because of stochastic noise; therefore, the network state can converge to a completely
different attractor state. Attractor states: A apoptosis, CP controlled proliferation, UC uncontrolled proliferation. b Distinct forward and
backward paths along the transition trajectories from the normal to the cancer states and the reversion trajectories from the cancer to the
normal states. c Epigenetic landscapes, attractor landscapes, and effective stability of the attractors during tumorigenesis and cancer
reversion. Points A to E correspond to positions along the graph shown in (b). Each valley in the epigenetic landscape represents a cell state,
either a normal or cancer state, where cells designated as black dots can either maintain a stable state or stochastically transition between
stable states during a transition. The average attractor landscape of a cell population in each condition can be obtained through the linear
combination of normal and cancer attractor landscapes, where a solid line between the A and CP or UP attractor states indicates a high barrier
between states and a dashed line indicates a barrier low enough for cells to move between attractor states.
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second step, in which the transition from the normal state to the
cancer state is blocked, effectively increases the barrier to
transition between phenotypes, thereby inhibiting an increase in
uncontrolled proliferation and maintaining a normal-like state. The
final state is not exactly the same as the original state, and it does
not have to be, as long as the new state is in a normal attractor
landscape (see E in Fig. 4c). An attractor landscape analysis can
reveal the targets of the first and second steps needed to achieve
stable cancer reversion.

DEFINING TARGETS FOR TWO-STEP CANCER REVERSION
Cells function through complex interconnected pathways that are
regulated by inputs such as signals from tissues or the tumor
microenvironment (TME). The outputs of these functions are cell
behaviors, such as quiescence, proliferation, and apoptosis. Most
cellular systems exhibit nonlinear dynamics. However, as the
controllability of nonlinear systems is structurally similar to that of
linear systems49, cellular systems can be approximately repre-
sented by a linear time-invariant (LTI) system: _x ¼ Ax þ Bu, where
x is an n-dimensional state vector of molecules, A is an adjacency
matrix of the molecular interaction network, and B is a constant
coefficient that weights the input stimulus, u (Fig. 5a). By
introducing this linear model, we can highlight the difference
between the two steps of cancer reversion on the basis of the
mode of control and the targets. To complement this simplicity, a
dynamic network model reconstructed on the basis of a case
study, which is not a simple linear model but is, in fact, a nonlinear
model defined by a Hill-type function, is presented in the
following section.

Step 1: Internal network control (IC)
To destabilize a stable and even drug-resistant state of cancer
cells, we propose that the first step involves rewiring the cancer
signaling networks to restore the attractor landscape of normal
cells. One obvious approach involves reshaping the landscape to
re-establish the exact same attractor (regulatory network state) as
that of the original normal cells. However, this type of precise
control is unrealistic in practice because altered genes cannot be
restored to their unaltered forms. Therefore, intracellular pathways
cannot be perfectly restored to be identical to the pathways in the
cells before genes were altered. Fortunately, we can use an
alternative strategy to establish an attractor landscape with a
critical attractor basin size similar in proportion to that in the
original attractor landscape (Fig. 5b). The critical attractors are
hallmarks of cancer, such as proliferation, apoptosis, quiescence,
and metabolism. However, the state transition trajectories to this
new normal state can be different from the trajectories that led to
the cancer state (Fig. 4b). Several complex network control
methods have been developed to drive an initial state to a desired
attractor state based on feedback vertex sets50, control kernels51,
and stable motifs52. By applying these control methods to the
intracellular signaling network, cancer cells may lose their cancer
hallmark features and gain characteristics of normal cells, thereby
entering a transition state where normal and cancer cell states
coexist. These control methods involve alterations to the
intracellular molecular network (A) in the system equation;
therefore, we refer to this first step as the internal network
control (IC).
IC drives the system into a transition state in which a cancer cell

can stochastically switch into a normal cell and vice versa. In living
cells, this unstable transition state is populated with cells with
heterogeneous transcript and proteome profiles. Experimental
support for this transcriptional heterogeneity has been observed
in hematopoietic stem cells undergoing state switching during
differentiation44,53. Experimental support for this proteome
heterogeneity and cells coexisting in initial and final states has
been reported during the cell transition during chemically

induced carcinogenesis45. In the transition state, the transition
barrier between the normal and cancer states is relatively low.
Therefore, the IC is insufficient to achieve stable cancer reversion.
A second step is needed.

Step 2: External input control (EC)
To reduce cell state instability, we need a second control strategy
that blocks the transition from the normal cell state to the cancer
cell state, effectively making the valley of the normal cell state
deeper than that of the cancer state (Fig. 5c). When an attractor
landscape has been established by an IC such that the cells
acquire a normal phenotype, for example, via the elimination of a
persistently activated path to growth factor-independent prolif-
eration, then, the second step involves eliminating the input that
induces acquisition a cancer phenotype, which in this example
may be eliminating stimuli of growth factor-dependent prolifera-
tion. Because this control strategy involves manipulating an input
(u) to the network, we refer to the second step as external input
control (EC). Changes to the input also affect the initial state of
intracellular pathways. Therefore, the EC can be used to establish
an initial state that enables an IC to induce a stable cell transition
from a cancer state to a normal-like state.

IC and EC candidates
The IC strategy involves the perturbation of (A), resulting in a
change in the structure of the molecular regulatory network by
targeting specific molecules or their interactions within the
network. The altered network structure reshapes the attractor
landscape of cancer cells, pushing them toward a transition state.
In contrast, the EC strategy targets system input (u). Thus, an EC
influences the initial value of the system so that the cells converge
at a nonmalignant attractor state in the given attractor landscape
after IC treatment. An attractor landscape analysis enables the
identification of inputs and molecules within the regulatory
network that can be targeted by ICs and ECs.
Experimentally, targets of ICs are often validated with methods

for modifying gene expression, gene‒gene interactions, or an
encoded product; these modifiers include siRNA, shRNA, the
CRISPR/Cas9 system, proteolysis targeting chimeras (PROTACs),
aptamers, and enzyme inhibitors. ECs are typically validated by
exposing the cells to ligands, growth factors, niche factors, or
cytokines, which mediate extracellular stimulus-induced signaling
that represent inputs into the regulatory network.
Candidate ICs and ECs in cancer reversion include various drugs

that are used for cancer regression. Potential EC candidates are
therapeutics that interfere with the function of cell surface
receptors, such as the receptors that respond to growth factors,
cytokines, or molecules in the extracellular matrix (Fig. 6a). These
drugs include the FDA-approved agents bevacizumab and
cetuximab, which interfere with the interaction between tumor
cells and the TME. IC candidates are drugs that interfere with
intracellular signaling molecule activity, such as inhibitors of the
mitogen-activated protein kinase (MAPK) cascade or inhibitors of
the phosphoinositide 3-kinase/AKT/mTOR pathway.
Combining an IC and an EC is a strategy for overcoming

therapeutic resistance. For example, the combination of the IC
drug everolimus, an mTOR inhibitor, with the EC drug trastuzumab
effectively inhibits the downstream PI3K/AKT signaling pathway,
blocking other inputs that activate PI3K/AKT signaling54 (Fig. 6b).
In addition, several EC/IC combination therapies, in addition to
trastuzumab and everolimus, such as erlotinib and everolimus,
and neratinib and temsirolimus, may prevent alternative signaling
events that promote cell proliferation and survival55. A combina-
tion of MEK and EGFR inhibitors blocks the negative feedback loop
to EGFR, providing synergistic benefit56,57 (Fig. 6c). The extent to
which these combination EC/IC therapies promote both cancer
reversion and cancer regression by cell death or immune system-
mediated elimination remains unknown. However, the
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combination strategy is effective in many cancers, including breast
cancer, colorectal cancer, and non-small cell lung cancer58.
Another strategy for manipulating the effect of an EC is based

on leveraging epigenetics. Tumor checkpoint modules represent
small, highly connected, and autoregulated sets of proteins that

canalize the effects of genomic alterations and other aberrant
signals to orchestrate downstream transcriptional programs
involved in tumor progression59,60. Therefore, it may be difficult
to change the phenotypic properties of cancer cells with
treatments that only regulate signaling upstream of altered
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signaling pathways. Adding drugs that target epigenetic regula-
tors to treatments that control signaling pathways or their
upstream factors may alter the attractor landscape of the
network and may be effective in driving normal-like state
acquisition (Fig. 6d). In addition, epigenetic regulators that are
part of a tumor checkpoint module are often triggered down-
stream of multiple signaling pathways. Therefore, controlling a
few signaling pathways may not restore the expression of tumor
suppressor genes. Drugs such as Vidaza and Dacogen target
DNMT1, an epigenetic regulator that is part of a tumor checkpoint
module. Vidaza and Dacogen are recognized as effective therapies
for several types of cancer and function by reactivating tumor
suppressor genes61.
The aforementioned and other FDA-approved epigenetic ther-

apeutics, including methylation inhibitors and histone deacetylase
inhibitors, may be used with EC/IC therapies for cancer reversion.

IMPLEMENTATION OF A CANCER REVERSION STRATEGY ON
THE BASIS OF SINGLE-CELL DATA
Applying an IC and EC to mediate cancer cell reversion and
confirming such a mechanism of action are challenging. We
cannot deduce the ultimate target, that is, a normal cell state, of a
cancer reversion strategy on the basis of a cancer sample.
Identifying a new transition state after IC treatment without
knowing the transition that induced tumorigenesis is difficult.
Single-cell analysis technologies, however, have emerged as
powerful tools for identifying cell types or states, investigating
cellular heterogeneity, and inferring transitions between cell states
along developmental or differentiation trajectories in a high-
dimensional gene expression space. In particular, pseudotime
analysis enables the development of computational models of cell
state transitions to predict system dynamics over time from static
single-cell expression data43. These models are based on
ergodicity, which is the assumption that a snapshot of a cell
population at a single time point is equivalent to a trace pattern
showing the evolution of a single cell over time. Therefore,
applying pseudotime analysis to tumorigenesis with single-cell
RNA sequencing data obtained from cancer and matched
adjacent normal samples is a specific method for identifying
cancer cell reversion based on an IC and EC. A pseudotime analysis
of tumorigenesis can help predict the normal cell state and the
transition state prior to tumor onset (Fig. 7). Furthermore, the
availability of data of temporal transition gene expression
associated with a cell state transition enables the inference of
dynamic intracellular network models that can be used to identify
cellular responses to extracellular inputs or network perturbations.
These dynamic network models enable the exploration of the
bistable properties of a transition state through an attractor
landscape analysis. Once a transition state model has been
constructed, (i) the dynamic network model of the cancer cell
state can be established by introducing driver mutations, and (ii)
optimal IC and EC candidates can be identified in complex
networks by employing attractor-based control theories, such as
the control kernel51 and stable motif control52. The suitability of
candidate targets can be validated experimentally. Either existing
therapeutics targeting these molecules can be evaluated, or the

identified targets can be used for drug development to achieve
therapeutic cancer reversion (Fig. 7).

Case study: identifying IC and EC targets for cancer reversion
by using single-cell RNA sequencing data from lung cancer
samples
To show the usefulness of the proposed strategy for cancer
reversion, we constructed a dynamic network model representing
the transition state during tumorigenesis of lung cancer by using
single-cell RNA-sequencing data (scRNA-seq) obtained from both
tumor and adjacent normal tissues62 (Supplementary Fig. 1). A case
study showing the use of this strategy illustrates the overall process,
from obtaining scRNA-seq data to the identification of IC and EC
targets of the dynamic network model (see Supplementary Text for
details). To this end, we have limited our model to a small-scale
network to illustrate the proposed control strategy, and an arbitrary
kinetic parameter set was chosen to ensure a bistable cell state.
Cancer is initiated by the accumulation of genetic alterations.

Therefore, we inferred a pseudotime-based order of tumorigenic
steps based on single-nucleotide variants (SNVs) detected from
scRNA-seq data by employing a computational method for use
with a trajectory inference based on SNP information (TBSP)
algorithm63 (Supplementary Fig. 2). We also employed the SCDIFF
algorithm64, which has been suggested to be useful for analyzing
cell differentiation trajectories on the basis of time-series scRNA-
seq data, to obtain a subtrajectory of a normal cell population
undergoing tumorigenesis and thus transitioning into a cancer cell
population (Supplementary Fig. 3). The resulting subtrajectory
contained a root cluster, where normal cells were dominant, end
clusters with cancer cells, and an intermediate cluster where
normal and cancer cells coexisted (Fig. 8a, top). Interestingly, the
critical transition index, which is defined by gene‒gene correlation
divided by cell‒cell correlation44, of the intermediate cluster was
higher than that of the other clusters, suggesting that the
intermediate cluster corresponded to the transition state caused
by tumorigenesis (Fig. 8a, bottom). To construct a dynamic
network model representing the transition state, differentially
expressed genes (Supplementary Table 1) between cells in the
transition state and cells in the cancer state were incorporated
with prior knowledge of gene interactions obtained from
STRING65, Omnipath66, and Human Signaling Network67 analyses
(Supplementary Fig. 4). The final core network consisted of eight
genes with a coupled feedback loop formed by FOSB/FOS/JUN, a
subnetwork related to antigen, such as HLA, presentation and a
subnetwork related to metastasis, which included factors such as
TIMP1 (Fig. 8b, top). Estimation of the optimal kinetic parameters
for a dynamic network model in systems biology is generally a
challenge68,69. For this case study, we employed the sRACIPE70

algorithm to identify a kinetic parameter set that showed bistable
cells, that is, a stable state comprising cells with a normal
phenotype (low TIMP1 and high HLA levels) and cells with a
cancer phenotype (high TIMP1 and low HLA levels) (Supplemen-
tary Table 2 and Supplementary Fig. 5).
Quantifying the attractor landscape is useful for understanding

the bistable cells in the transition state. The potential landscape
U TIMP1;HLAð Þ ¼ � ln PðTIMP1;HLAÞ71 of the transition state shows
two distinct attractors: a normal-like attractor at low TIMP1 and high

Fig. 5 Internal network control and external input control for cancer reversion. a Defining control strategies in a cellular system. A cellular
system is represented by _x ¼ f ðx;uÞ, where x is the n-dimensional state vector of genes and f(x, u) is a vector field that describes the dynamics of
the system related to the input signal u, which is an m-dimensional control vector of genes. Near an equilibrium point in the nonlinear system,
the vector field f can be approximated by Ax + Bu, where A is an adjacency matrix and B is an appropriate dimensional matrix of constant
coefficients of input weights. The system output can be described as a simple weighted combination of the state variables, y = Cx. b An internal
network control (IC) mediates alterations in a signaling pathway to restore the attractor landscape of normal cells. c External input control (EC)
that effectively modifies the epigenetic landscape to make the normal state more stable. An example of EC is a growth factor receptor inhibitor
that prevents cells from maintaining a cancer state by completely blocking a specific trajectory related to uncontrolled proliferation.
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Fig. 6 Candidate target and representative ICs, ECs, and IC and EC combinations. a FDA-approved drugs as potential candidates for ECs
that inhibit crosstalk between tumor cells and the TME; these candidates include tumor vasculature, ECM, and inflammatory factors.
b Combining an IC and EC to enhance therapeutic responsiveness by blocking signaling crosstalk that converges to a cancer pathway.
c Combining an IC and EC to overcome negative feedback in the MAPK signaling pathway. d Targeting tumor checkpoint modules. The
epigenetic modulator DNA methyltransferase 1 (DNMT1) is downstream of multiple cancer-relevant pathways and promotes tumorigenesis.
Targeting DNMT1 restores the normal activity downstream of multiple cancer-associated signaling pathways.
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HLA levels and a cancer-like attractor at high TIMP1 and low HLA
levels (Fig. 8b. bottom), where P represents the probability density of
the cell states (see the Supplementary Text for details). Rewiring the
regulatory network by altering genes in lung cancer, such as
FOSB72,73 and SPP174,75, changes the potential landscape; specifi-
cally, the normal-like attractor disappears and the cancer-like
attractor shifts to a more malignant state (Supplementary Fig. 6a
and Fig. 8c). The ultimate goal of using an IC is to drive this cancer
state to a new transition state where normal- and cancer-like
attractors coexist in the potential landscape. To find an IC target, we
performed a perturbation simulation analysis for all the genes and
found that upregulation of FOSB induced the reappearance of a
normal-like attractor in the potential landscape (Fig. 8d). In addition,
the ultimate goal of an EC is to block any state transition trajectory
that leads to the cancer-like attractor while not inhibiting states
converging only to a normal-like attractor. We traced all the initial
states that converged to a cancer-like attractor and excluded the
corresponding trajectories from the potential landscape (Supple-
mentary Fig. 6b, c). The resulting landscape included only a normal-
like attractor (Fig. 8e), suggesting that, via this system regulation, the
cells behaved as normal cells under EC conditions. Comparing the
two sets of initial states that converged to normal- and cancer-like
attractors, we found that the levels of FOS, FOSB, and HLA were
significantly decreased in the states with trajectories converging to
the cancer-like attractor (Fig. 8e). This finding indicates that an EC,
namely, drugs activating the upstream signaling pathways of FOS,
FOSB, and HLA, can be implemented (Fig. 8f).

This case study shows the implementation of an IC and EC by
constructing a gene regulatory network model and simulating its
dynamic behaviors upon the potential landscape. Although this
example illustrates the whole process proposed for inducing
cancer reversion, from obtained single-cell data from a cancer
patient to the identification of IC and EC targets, limitations are
noted. In contrast to estimating optimal kinetic parameters from
time-series data, we heuristically determined a specific parameter
set that ensured cell bistability. Recent advances in single-cell
transcriptomics have led to many dynamic network inference
methods, such as SCODE for differential equation models and BTR
and SCNS for Boolean network models (see Review articles76,77).
However, due to the difficulty in identifying transitioning cells and
their sparsity in the state space, modeling cell state transitions and
controlling them are still outstanding challenges in biology and
computational science. Another recent study proposed an
approach for generating dynamic network models showing
transitions between distinct states on the basis of omics data78.
Applying these methods for understanding transitions to various
types of omics data may enable us to estimate an optimal
parameter set to fit real data and to better identify the optimal IC
and EC targets for cancer reversion.

CONCLUSION AND FUTURE PERSPECTIVES
A better understanding of the IC and EC targets contributing to
cancer reversion will lead to new strategies for treating cancer and
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preventing tumorigenesis while reducing the risk of adverse
effects on normal cells and preventing drug resistance. From a
practical point of view, the proposed control strategy does not
necessarily aim to restore cancer cells to their original state prior
to tumorigenesis. In contrasts, finding traces of the original normal
state of the normal cells from cancer patients and driving cancer
cells to a state as close as possible to the original state is a more
realistic approach to cancer reversion. An IC plays a role tracing
normal cells, whereas an EC is critical for erasing any trace of
cancer cells by allowing only a normal cell state in the epigenetic
landscape. In our model framework, reverted cancer cells can be

retransform into cancer cells when the EC treatment is halted
because the cancer state exists in the landscape. Therefore, an EC
treatment regimen may be required for a long time, even after
cancer cells have been reverted to normal cells, to prevent cancer
recurrence.
Cancers controlled or managed with continuous or repetitive

treatments of EC drugs for long periods may be regarded as
chronic diseases, similar to diabetes, asthma, and heart disease.
Specifically, cancer reversion is not considered a cure, but it is
“controlled” or “managed” because the signs and symptoms of
cancer disappear after EC treatment. Although an EC treatment will

Fig. 8 Identifying IC and EC targets for cancer reversion by using single-cell RNA-sequencing data obtained with lung cancer samples.
a The subtrajectory from the normal cell cluster to the cancer cell clusters ran through the intermediate cluster (top) and the critical transition
index of each cluster (bottom). Pie charts represent the composition of the normal and cancer cells in each cluster. b The gene regulatory
network of the transition state (top) and the corresponding potential landscape (bottom). Output nodes are pink. HLA is a meta-gene
representing genes with the same function in network topology, such as HLA-A, HLA-B, HLA-C, etc. c The rewired network in cells in the cancer
state (top) and the corresponding potential landscapes (bottom). Genetic alterations to FOSB and SPP1 are shown in red. d Changes in the
potential landscape after IC treatment. e Changes in the potential landscape after IC and EC treatments. Box plots showing comparisons of the
two sets of initial states, one converges to a normal attractor and one that converges to a cancer-like attractor (NS: not statistically significant,
***p < 0.001). f A schematic showing the cancer reversion strategy with an IC that targets FOSB and an EC that targets certain receptors
activating FOSB, FOS, and HLA by mediating signaling.
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likely not completely eliminate the chance of cancer recurrence,
the ability to manage cancer as a chronic disease may help
patients maintain a high quality of life throughout their cancer
treatments. With this new paradigm, we may define a new
“normal” in cancer therapy as “living with cancer risk,” a condition
in which the risk of a cancer recurring is controlled effectively with
an EC regimen. This model inspires future investigation into the
development of additional and specific control strategies for
cancer reversion, including methods to systematically identify IC
and EC targets via multiomics data and to explore control targets
with synergistic action for complete cancer reversion. Furthermore,
the theoretical framework of our cancer reversion model based on
attractor landscapes suggested in this review is not limited to
cancer research and can be used to study other diseases induced
by cell state transitions, including the EMT and cell reprogramming.
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