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Normalizing Input–Output Relationships of Cancer
Networks for Reversion Therapy

Jae Il Joo, Hwa-Jeong Park, and Kwang-Hyun Cho*

Accumulated genetic alterations in cancer cells distort cellular
stimulus-response (or input–output) relationships, resulting in uncontrolled
proliferation. However, the complex molecular interaction network within a
cell implicates a possibility of restoring such distorted input–output
relationships by rewiring the signal flow through controlling hidden molecular
switches. Here, a system framework of analyzing cellular input–output
relationships in consideration of various genetic alterations and identifying
possible molecular switches that can normalize the distorted relationships
based on Boolean network modeling and dynamics analysis is presented.
Such reversion is demonstrated by the analysis of a number of cancer
molecular networks together with a focused case study on bladder cancer
with in vitro experiments and patient survival data analysis. The origin of
reversibility from an evolutionary point of view based on the redundancy and
robustness intrinsically embedded in complex molecular regulatory networks
is further discussed.

1. Introduction

A cell receives various stimuli from its environment and pro-
duces appropriate responses to maintain the homeostasis of the
whole organism. From a system’s point of view, such stimulus-
response relationships define input-output characteristics of the
cellular system that are determined by complex molecular inter-
actions within a cell. These relationships can be distorted by ge-
netic alterations, sometimes resulting in malignant transforma-
tion to cancer. Interestingly, the complexity of molecular interac-
tions implicates the possibility of restoring normal input-output
relationships by compensating erroneous regulation through
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rewiring of the molecular interaction net-
work. If such normalization is possible, we
might be able to reprogram cancer cells to
revert to normal (or normal-like) cell states.
This would open a new paradigm of re-
version therapy as an alternative to current
anti-cancer therapeutics.

Cancer reversion has been sporadically
observed at a phenomenological level for
over a century, but the underlying mech-
anism is still not unveiled and no sys-
tematic method of analyzing the dynami-
cal behavior of the underlying molecular
networks has been proposed.[1–4] Therefore,
this presents a renewed challenge from
a systems biological perspective.[5] In this
study, we define the “reversion” of a can-
cer cell as restoring the input-output rela-
tionships of normal cells. We investigate
complex intracellular molecular regulatory

networks to analyze reversibility and identify potential molecular
targets to be controlled for reversion. For this purpose, we employ
the Boolean network model, a logical discrete state model where a
molecular activity is represented by a discretized level (high (+1)
or low (0)) and the regulatory (activating or inhibiting) interaction
between nodes is denoted by a link connecting the two nodes. A
collection of all node activities constitutes the network state that
eventually converges to a steady state called an attractor. There-
fore, a subset composed of input and output nodes in an attractor
represents the input-output relationships of the cellular system
at a steady state.

Even though the Boolean network model simplifies con-
tinuous biological quantities,[6] it has been well proven that
Boolean network models can still capture essential biological
dynamics.[7–10] Because of this, there have been a number of stud-
ies on the complex network control of biological systems based
on Boolean network models.[11–14] Among such studies, canaliza-
tion effects between upstream and downstream nodes in Boolean
networks were intensively investigated.[14] Here, the canalization
of a Boolean function means that its output node activity can be
determined by one of multiple regulatory input nodes, called a
canalizing input, irrespective of other input nodes. In this study,
we employ this concept of canalization to determine the input-
output relationships of Boolean networks without the need to
identify all attractor states directly, which is a very challenging
problem from a computational perspective.[15]

On the basis of the aforementioned concepts and methods, we
developed in this study a generic framework with which we can
examine the reversibility of input-output relationships of cancer
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cells depending on the primary driver genetic alterations. Fur-
thermore, the framework can be used to identify molecular tar-
gets that can induce network rewiring for the restoration of dis-
torted input-output relationships. We examined the proposed ap-
proach with a number of cancer cell networks and validated its
usefulness through both in silico and in vitro experiments with
a particular focus on the example of bladder cancer cells. Pa-
tient data analysis also supports our approach. Finally, we further
explored the evolutionary origin of such reversibility and found
some interesting clues in terms of robustness and redundancy
through extensive simulation analyses.

2. Results

2.1. Input–Output Relationships of Boolean Networks

A cell should properly respond to extracellular stimuli to main-
tain homeostasis: this characteristic of a cell is defined as the
input-output (IO) relationship and is determined by the dynam-
ics of its intracellular molecular network.[16] In general, an input
node of a network is defined as a node without any upstream
nodes, while an output node is defined as a node without any
downstream nodes. Here, we introduce Boolean network mod-
eling to systematically analyze the dynamics of such networks
and examine IO matching upon an expanded Boolean network
model to determine the IO relationship with significantly re-
duced computational complexity (see Experimental Section for
details). Figure 1A illustrates the IO matching of an example
Boolean network model; the state of an input node subsequently
determines the states of downstream nodes following the links
(their logical regulatory relationships) in blue color, ultimately de-
termining the state of an output node. When the state of the input
node is 0 (OFF), the state of the output node is determined to be
0. Likewise, when the state of the input node is 1 (ON), the state
of the output node is determined to be 1. In this case, the state
of the output node can be solely determined by the state of the
input node, which is deterministic IO matching. However, due
to the complex regulation of networks, it is not always possible to
determine the states of output nodes based on the states of input
nodes, resulting in nondeterministic IO matching.

If a node is fixed to a specific state by a mutation, the IO match-
ing can be disrupted. The mutation of disrupting the IO match-
ing is an effective mutation, otherwise, it is an ineffective muta-
tion. In Boolean networks, each node can be mutated in two ways;
the state of a node with a gain-of-function (GOF) mutation should
be fixed to 1, whereas the state of a node with a loss-of-function
(LOF) mutation should be fixed to 0. Interestingly, GOF muta-
tion of the node A is ineffective whereas LOF mutation of the
node A is effective (Figure 1B,C). From this case, we conceived
that the disrupted IO matching by the LOF mutation on node
A can be restored by fixing the state of node A to 1. Based on
this, we define the “reverse control” as completely restoring the
IO matching that was disrupted by a mutation to the original IO
matching. If the reverse control is possible for a given mutation,
then the mutation is defined as a reverse-controllable mutation.

According to the effectiveness and reverse-controllability of
mutations, we classified the Boolean network nodes into four
classes (Figure 1B–J, and Figure S2, Supporting Information).
When both GOF and LOF mutations of a node are ineffective, we

classified the node as a C0 node (Figure 1I). If one mutation of a
node is effective whereas its complementary mutation is ineffec-
tive, then the node is classified as a C1 node (Figure 1B,C,G,H).
C1 nodes are reverse-controllable nodes since the effective muta-
tions of C1 nodes can be reversed by controlling the nodes to be
the ineffective value. Controlling a mutated node is not a special
case because most targeted therapies inhibit mutated or altered
genes. On the other hand, the mutation of a node can also be re-
versed by controlling a downstream C1 node. For instance, the
LOF mutation of node B can be reversed by controlling node D
to be 1 (Figure 1E). The GOF mutation of node B is also reverse-
controllable because the original IO matching can be restored
by controlling node B and D to be 0 and 1, respectively. If these
nodes are not C1 nodes, then we classify them as C2 nodes. Fi-
nally, the remaining nodes are classified as C3 nodes, which are
not reverse-controllable (Figure 1F).

2.2. Reversibility of Cancer Boolean Networks

By applying the node classifications based on reverse-
controllability, we analyzed 18 Boolean networks from the
Cell Collective which are related to cancer or cell fate decision-
making (Table S1 and Figure S1, Supporting Information).[17–30]

We found that most networks have less than 40% C3 nodes,
which indicate the reversibility of cancer networks (Figure 1K).
To examine the reversibility of cancer networks in more details,
we further analyzed the bladder cancer Boolean model (“mapk”
network)[25] since the bladder cancer model shows strong depen-
dency on the TGF-b signal, and thus in vitro experiments for the
validation of IO matching restoration are possible (Figure 2A,B).
The bladder cancer network contains four input nodes, three
output nodes, and 46 internal nodes. According to reverse-
controllability, the 46 internal nodes are classified into 12 C0
nodes, 19 C1 nodes, 4 C2 nodes, and 11 C3 nodes (Figure 2A).
From the OncoKB database, we investigated the cancer genes
in the bladder cancer network (Table 1).[31] Among the 12 C0
nodes, only 4 nodes are known as cancer genes. However, in the
case of the other classes, more than half of the nodes are cancer
genes: 13/19 for C1, 3/4 for C2, and 7/11 for C3. As mutations
on C0 nodes are ineffective, we can infer that C0 nodes might be
less related to cancer genes than other node classes.

We examined the efficacy of reverse control targets of bladder
cancer cell lines. Most bladder cancer cell lines have genetic al-
terations on C3 nodes, whereas KU-1919 and HT-1197 cell lines
have genetic alterations on reversible nodes only (Table 2). We
rewired the bladder cancer network by mapping genetic alter-
ations of the corresponding cell lines and then evaluated the ef-
fects of C1 node interventions within the rewired networks. As a
result, we found that simultaneous inhibition of both MAP3K1
and AKT can restore the disrupted IO matching of KU-1919 cells
and that inhibition of MAP3K1 is sufficient to restore the dis-
rupted IO matching of HT-1197 cells (Figure 2C,D).

Compared to the normal network, the KU-1919 network re-
sponds differently to TGF-b (Figure 2B,C). TGF-b is well known
to exert anti-proliferative effects and regulate differentiation dur-
ing normal development in various organs in vertebrates.[32]

In contrast, growth inhibition via TGF-b signaling is released
and TGF-b instead promotes invasion and metastasis in some
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Figure 1. Reversibility of complex networks. A) IO relationship of an example Boolean network. The Boolean regulatory logic of each node is A(t+1) =
I(t) OR B(t); B(t+1) = I(t); C(t+1) = A(t) AND D(t); D(t+1) = B(t); E(t+1) = A(t); O(t+1) = (E(t) OR C(t)) AND C(t). The color of each node represents
its class according to reverse controllability. B–I) IO relationship of the mutated network. Blue links represent the signal flow from an input node, and
dark red links represent the signal flow from mutated nodes in dark red color. Bold links represent dominant signal flows from the corresponding input
node or mutated nodes. Blue IO relationship is normal but dark red IO relationship is disrupted. J) Node classification of the example Boolean network.
The color of each node represents its class. K) Ratio of node classes of 18 Boolean networks from Cell Collective.

cancers.[33] Likewise, KU-1919 showed evading growth inhibition
via TGF-b signal in both our simulation of the Boolean network
model and experimental validation (Figure 3A–G). To validate the
IO relationship restoration of the KU-1919 cells, we investigated
the influences of MAP3K1 and AKT inhibition on the regula-
tion of cellular response to TGF-b in KU-1919 cells by using siR-
NAs against MAP3K1 and MK2206 (a specific inhibitor of AKT).

Combined treatment of MAP3K1 siRNAs and MK2206 further
reduced the intensity of crystal violet staining of KU-1919 cells at-
tached to the culture plates when TGF-b was included in the cul-
ture media; this indicates that the simultaneous blockage of both
components induces a normal response to TGF-b stimulation.
To further determine whether the co-inhibition of MAP3K1 and
AKT induces an increase of cell death, dead cells were counted
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Figure 2. Reversibility of a bladder cancer network. A) A bladder cancer Boolean network (“mapk” network). The color of each node represents its class.
IO relationship of B) wild type (WT), C) the KU-1919 cancer cell line and D) the HCT-1197 cancer cell line. Each stacked square represents an input node
state and an inferred output node state (white: 0, gray: 0.5, black: 1). The lines between input node states and inferred output node states represent the
IO matching (D: DNA_damage, E: EGFR_stimulus, F: FGFR3_stimulus, T: TGFBR_stimulus, A: Apoptosis, R: Grwoth_Arrest, P: Proliferation). Lines with
the same color are connected to the same inferred output node state from various input node states. The IO matching of the KU-1919 and HCT-1197
cell lines are obtained by applying mutations [AKT = 1, RAS = 1, RSK = 1] and [RAS = 1, PI3K = 1], respectively. The disrupted IO matching of KU-1919
and HCT-1197 can be normalized to that of WT by controlling node states [AKT = 0, MAP3K1_3 = 0] and [MAP3K1_3 = 0], respectively.
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Table 1. Class, gene name, and annotation by OncoKB of each node in the
bladder cancer network.

Node Class Gene name OncoKB

ATF2 C0 ATF2

ATM C0 ATM Tumor suppressor

ELK1 C0 ELK1

FOS C0 FOS

FRS2 C0 FRS2

GAB1 C0 GAB1 Oncogene

GRB2 C0 GRB2

JUN C0 JUN Oncogene

PKC C0 PRKCA PRKCB PRKCG

RAF C0 RAF1 BRAF ARAF Oncogene

RSK C0 RPS6KA1 RPS6KA2 RPS6KA3 RPS6KA6

TAOK C0 TAOK1 TAOK2 TAOK3

AKT C1 AKT1 AKT2 AKT3 Oncogene

AP1 C1

BCL2 C1 BCL2 Oncogene

CREB C1 CREB1 Oncogene

DUSP1 C1 DUSP1

FGFR3 C1 FGFR3 Oncogene

FOXO3 C1 FOXO3

MAP3K1_3
C1 MAP3K1 MAP3K2 MAP3K3 Tumor suppressor

MAX C1 MAX Tumor suppressor

MSK C1 RPS6KA4 RPS6KA5 Oncogene

p70 C1 RPS6KB1 RPS6KB2 Oncogene

PDK1 C1 PDK1

PI3K C1 PIK3CA Oncogene

PLCG C1 PLCG1 PLCG2 Oncogene

PPP2CA C1 PPP2CA

PTEN C1 PTEN Tumor suppressor

RAS C1 HRAS KRAS NRAS Oncogene

SOS C1 SOS1 SOS2 Oncogene

SPRY C1 SPRY2

EGFR C2 EGFR Oncogene

ERK C2 MAPK1 MAPK3 Oncogene

JNK C2 MAPK8 MAPK9

MEK1_2 C2 MAP2K1 MAP2K2 Oncogene

GADD45 C3 GADD45A GADD45B GADD45G

MDM2 C3 MDM2 Oncogene

MTK1 C3 MAP3K4

MYC C3 MYC Oncogene

p14 C3 CDKN2A Tumor Suppressor

p21 C3 CDKN1A Tumor Suppressor

p38 C3 MAPK11 MAPK12 MAPK13 MAPK14

p53 C3 TP53 Tumor Suppressor

SMAD C3 SMAD2 SMAD3 SMAD4 Tumor Suppressor

TAK1 C3 MAP3K7

TGFBR C3 TGFBR1 TGFBR2 TGFBR3 Tumor Suppressor

separately via the trypan blue assay. The results indicated that, un-
like the responses in the control and/or single inhibition groups,
the decreased activity of both of MAP3K1 and AKT contributed to
increasing the number of dead cells, ultimately lowering viability
through TGF-b stimulation.

We further examined the restoration of IO relationship using
other human bladder carcinoma cell line, HT-1197. Compared
to the normal network, the HT-1197 network exhibits sensitiv-
ity to DNA damage (Figure 2B,D). siRNA-mediated depletion
of MAP3K1 caused a reduction in cytotoxicity induced by fluo-
rouracil in the HT-1197 in vitro experiment (Figure S3, Support-
ing Information). Moreover, less nuclear foci consisting of phos-
phorylated histone H2AX—a sensitive marker of DNA damage
response (DDR)—were observed in MAP3K1 siRNA-treated cells
than in untreated cells.[34] These results indicate that inhibition of
MAP3K1 expression may interfere with proper DDR, which stops
DNA replication and prevents the transmission of damaged ge-
netic information to daughter cells. From these results, we con-
cluded that IO matching restoration via reverse control can be
reliably achieved in cancer cells as expected from the simulation
analysis.

We also performed the Kaplan-Meier analysis of the disease-
free survival rate of bladder cancer patients. Patients (n = 276)
were grouped into altered or unaltered groups according to
whether they have alterations on each node class or not. In-
triguingly, we found that patients with alterations of C1 nodes
have better disease-free survival rates than patients without C1
node alterations (altered = 159, unaltered = 117, p-val = 0.01)
(Figure 3H, top-right). On the other hand, patients with C2 node
alterations have worse disease-free survival rates than patients
without C2 node alterations (altered= 22, unaltered= 254, p-val=
0.02) (Figure 3H bottom-left). Lastly, C0 and C3 node alterations
have insignificant effects on patient survival (Figure 3H, top-left
and bottom-right). In terms of overall survival, alterations of each
node class show insignificance among the altered and unaltered
groups (Figure S4, Supporting Information).

The bladder cancer patient analysis results indicate the pos-
sibility that alterations of the C1 node class might be beneficial
to patient survival. To further investigate this, we analyzed other
cancer networks. In the breast cancer network (“mammalian”
network), there are 4 C0 nodes, 12 C1 nodes, and 2 C3 nodes.
We analyzed overall, progression-free, and disease-free survival
of breast cancer patients and found that C1 alterations (altered
= 192, unaltered = 137) have beneficial effects on overall (p-val
= 0.02) and progression-free survival (p-val = 0.01) but an in-
significant effect on disease-free survival (Figure S5, Support-
ing Information). To further validate our method, we applied
the method to another cancer network model. Recently, Choi et
al. found that inhibition of BCL11A and HDAC1/2 can repro-
gram basal-like breast cancer cells into luminal A breast cancer
cells, which induces sensitivity to endocrine therapy.[8] They con-
structed a Boolean network model that can represent basal and
luminal A breast cancer cells with two input nodes, EGF and Es-
trogen. By applying our method, the nodes in their Boolean net-
work are classified as follows: ER, CCNE1, FOXC1, HDAC1/2
and BCL11A are classified as C1 nodes; the rest nodes are clas-
sified as C0 nodes (Figure S6, Supporting Information). Choi
et al. showed in their experiments that inhibition of BCL11A
or HDAC1/2 results in partial normalization in response to
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Table 2. Genetic alteration profile of bladder cancer cell lines. Each row represents a genetic profile of a bladder cancer line. Columns are names of genes.
GOF: gain-of-function, LOF: loss-of-function.

AKT1 ATM CDKN1A CDKN2A FGFR3 HRAS KRAS MAPK1 MAPK3 MAX MYC NRAS PIK3CA PTEN RPS6KB2 TP53

BC3C GOF LOF

BFTC905 GOF GOF LOF

CAL29 GOF GOF LOF

HT1197 GOF GOF

HT1376 LOF GOF LOF

J82 GOF GOF LOF

JMSU1 LOF LOF

KMBC2 LOF LOF LOF LOF

KU1919 GOF GOF GOF

RT112 LOF GOF GOF LOF

RT11284 LOF

SCABER LOF LOF

SW1710 LOF

T24 GOF LOF

TCCSUP GOF LOF

UMUC1 LOF

UMUC3 LOF GOF LOF

VMCUB1 LOF GOF GOF LOF

tamoxifen (an estrogen receptor inhibitor). They also showed that
inhibition of BCL11A and HDAC1/2 can synergistically induce
responsiveness to tamoxifen. These support the prediction of our
method. Moreover, they showed that low expressions of BCL11A
and HDAC1/2 are correlated with better prognosis of breast can-
cer patient, which supports the clinical benefits of IO relationship
normalization.

2.3. Robustness, Redundancy, and Reversibility of Boolean
Networks

Many nodes of Boolean networks in the Cell Collective database
are reverse-controllable. Based on this, we hypothesized that in-
tracellular molecular interaction networks might have gained
more reverse-controllable nodes and thereby possess high re-
versibility during the evolutionary process. As it is known that
such intracellular networks acquired robustness and redundancy
through evolution,[35–40] we tried to identify the relationships
among the reversibility, redundancy, and robustness of complex
molecular interaction networks. Theoretically,any complex net-
work without redundancy in IO paths (such as a simple cascade)
should be irreversible and therefore fragile to random mutation.

For quantitative analysis, we defined measures for the re-
versibility, redundancy, and robustness of a Boolean network
(see Experimental Section for detailed information). First, the
reversibility of a network is measured by the ratio of C0, C1,
and C2, excluding C3 nodes. If a network has a mutation on a
C3 node, the IO matching of the network cannot be restored.
In other words, a network is less reversible if it has more C3
nodes than other networks. Secondly, the redundancy of a net-
work is measured by the number of paths between input and
output nodes that have deterministic IO matching. Finally, we

defined two measures for the robustness of a network. The ro-
bustness to mutations is measured by the average of the ratios
of retained primary attractors after one node mutation, whereas
the robustness to perturbation is measured by the ratio of initial
states converging to the same attractor independent of a single
node perturbation.

We analyzed the robustness, redundancy, and reversibility
measures of the Cell Collective networks and found that they
have positive tendencies but are not much significant (Figure S7,
Supporting Information). In this analysis, five networks were ex-
cluded as they have no deterministic IO matching. To validate the
significance of such tendency, we generated 100 random configu-
ration models for each of the 10 Cell Collective networks since the
rest of networks take too much time to generate random models
(Table S1, Supporting Information). Then, we measured the ro-
bustness, redundancy, and reversibility of 306 networks among
1000 networks which have at least one deterministic IO match-
ing (Table S2, Supporting Information). As we expected, the re-
dundancy and reversibility of the networks exhibited a positive
correlation (r = 0.23, p-val = 6.3 × 10−5, Pearson; r = 0.21, p-val
= 0.00026, Spearman; Figure 4A). Furthermore, reversibility has
positive correlations with robustness to mutations (r = 0.34, p-val
= 5.7 × 10−10, Pearson; r = 0.28, p-val = 1.0 × 10−6, Spearman;
Figure 4B) as well as robustness to perturbation (r = 0.58, p-val
= 6.0 × 10−29, Pearson; r = 0.57, p-val = 6.2 × 10−28, Spearman;
Figure 4C).

3. Discussion

Cancer has been considered irreversible since genetic alter-
ations are irreversible, and thereby some attempts to artificially
restoring altered gene activity have been suggested for cancer
reversion.[4] However, there is a growing amount of evidence
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Figure 3. Biological supporting evidence for the reversibility of the bladder cancer network. siMAP3K1-transfected cells and untransfected KU-1919 cells
were grown with MK2206 and TGF-b for 48 h. A,B) KU-1919 cells of each group were subjected to western blot assays and RT-qPCR. C,D) KU-1919
cells were stained for crystal violet assays and the intensity of the staining was measured. E,F), and G) KU-1919 cell viability was determined by trypan
blue dye. Statistically significant differences were determined by a two-tailed Student’s t-test (n = 4): *p < 0.05 and ***p < 0.005. Error bar represents
standard errors. H) Disease-free survival analysis of TCGA bladder cancer patients (n = 276) according to alterations in each node class.

supporting the idea that cancer reversion might be possible with-
out directly restoring mutated gene activities. For instance, it
was recently revealed that a normal cell can maintain its normal
identity even after it acquires oncogenic driver mutations.[41,42]

Moreover, some molecular targets that can induce cancer rever-
sion without gene restoration were identified and experimentally
validated.[3,43–45] Nonetheless, no systematic framework has been
available to date with which researchers can investigate cancer

reversion at a molecular regulation level. In this study, we ex-
pounded that the IO relationships of genetically perturbed in-
tracellular molecular networks can be normalized through elab-
orate control under certain specific conditions and that the re-
versibility of a generic complex network is related to the in-
trinsic robustness and redundancy of the network. Considering
the similar properties across various intracellular molecular net-
works, we expect that the distorted IO relationships of many other
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Figure 4. Relationships among reversibility, robustness, and redundancy
of random complex networks. A) Reversibility and redundancy. B) Re-
versibility and robustness to a permanent mutation. C) Reversibility and
robustness to a transient perturbation. Random complex networks are
generated by rewiring 10 Cell Collective Boolean networks with conserved
nodal degree distribution. Pearson correlation r and p-value are repre-
sented on each graph. The shaded area represents the 95% confidence
interval for linear regression (n = 306).

intracellular molecular networks might also be reversible
through some proper control of perturbed network dynamics.

Our method is the first approach to examine the IO relation-
ship and to control the disrupted dynamics of a damaged net-
work caused by genetic alterations. Other previous control meth-
ods cannot be used for analyzing IO relationship because most
of these methods focus on how to drive a network state to a single
desired state which cannot represent the IO relationship. Never-
theless, we compared our method with the most relevant study
that classified the nodes of a complex network into indispens-
able, dispensable, and neutral nodes.[46] Vinayagam et al. classi-
fied a node as indispensable if its removal increases the number
of driver nodes required to fully control the complex network.
Conversely, they classified a node as dispensable if its removal
decreases the number of driver nodes. If removal of a node has
no effect, it was classified as neutral. Driver nodes include all the
input nodes and thus their change can be considered as an in-
terruption of IO relationship. By using this method, we analyzed
and classified the nodes of 18 networks from the Cell Collective,
which are shown in Figure 1K and Figure S1, Supporting Infor-
mation and compared with the results of our study. It shows that
there is no correlation between them (Figure S8, Supporting In-
formation), since Vinayagam et al. only considered the change of
the number of driver nodes when a node is removed, not the IO
relationship.

Recently, intracellular molecular regulatory network models,
including Boolean network models, are becoming more available
with the rapid development of high-throughput measurement
technologies such as single cell-resolution transcriptomic mea-
surements and various network reconstruction methods based
on these data.[47–50] When a Boolean network model of intracel-
lular molecular regulations is given, our method automatically
classifies the given network nodes and identifies therapeutic re-
version targets without any prior knowledge. However, regula-
tory logic information of a network model may contain more un-
certainty compared to interaction structures. Thus, we have fur-
ther investigated whether our method can still provide consis-
tent results under such uncertainty. For this purpose, we have
analyzed the bladder cancer network by introducing various de-
grees of uncertainty in the regulatory logics and confirmed that
our method can consistently (>80%) classify the network nodes
with about 5% of random alteration of regulatory logics in the
network model (Figure S9, Supporting Information).

From an evolutionary point of view, it seems that there is no
reason for intracellular networks to acquire such reversibility
through evolution since the restoration of IO relationships needs
an exquisite event that can counteract mutational effects, which
would be very unlikely to occur under natural circumstances. On
the other hand, some previous studies showed that biological
networks might have acquired redundancy while achieving ro-
bustness of their regulatory functions under noisy environments
during evolution.[35–38] As our results on complex network anal-
ysis further show correlations between reversibility and both re-
dundancy and robustness, we infer that the evolutionary origin
of reversibility might be the intrinsic redundancy of intracellu-
lar molecular networks achieved as a byproduct during network
evolution towards robustness for homeostasis.

Although a single mutation is usually considered to classify the
nodes of Boolean networks, actual cancer cells have numerous
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genetic mutations and alterations. To apply our method to such
cases, it is necessary to infer functional mutations and alterations
of a cancer patient to assess whether the patient has any alteration
on C3 genes. If the patient does not have a C3 gene alteration,
then we can identify the reverse control targets by analyzing the
combined effect of reversion targets based on the information of
genetic alterations.

It is still possible that a genetic profile of a patient is irreversible
without mutations on C3 genes. For instance, the breast and blad-
der cancer networks are reversible for about 90% of combina-
tions of three mutations on reversible nodes but not for the rest
10% combinations[24,25] (Figure S10, Supporting Information);
three mutations in this analysis correspond to about 20% and
10% damage on the breast and bladder cancer networks, respec-
tively. Cancer patients may have less than 10% mutated and al-
tered genes in many cases.[51] Therefore, our reverse control strat-
egy for cancer reversion might be sufficiently reliable. In future
studies, we will need to further investigate the maximum number
of mutations that can allow for reversibility at the whole-genome
level.

We classified the nodes of various molecular regulatory net-
works into 4 classes. In particular, C1 nodes are classified as
promising targets for cancer reversion. By regulating C1 nodes,
the mutational effect of upstream C1 or C2 nodes can be compen-
sated. Interestingly, bladder cancer patients carrying alterations
or mutations on C1 genes showed better survival scores than
others. On the other hand, alterations or mutations on C2 genes
showed the opposite result to that of C1 genes. C1 and C2 genes
are both reversible by regulating downstream C1 genes, whereas
C1 genes are also reversible by regulating themselves. Since most
targeted therapies share targets and biomarkers, targeted therapy
for C1 altered groups might have had some similar favorable
effects to those expected of cancer reversion, thereby resulting in
such promising outcomes. On the other hand, targeted therapy
for C2 altered groups might have been successful in inducing
apoptosis or arrest of cancer cells, but since it cannot restore IO
matching, the targeted therapy might have incurred significant
adverse effects on normal cells. C3 genes are the biomarker for
irreversible genetic profiles. If a cancer patient carries mutations
of C3 genes, the complete restoration of IO matching would
not be possible. In this case, we can consider partial restoration
of IO matching. Since some stimuli induce cell cycle arrest or
apoptosis, restoration of the dependency of these stimuli is the
focus for the partial restoration of IO matching and has been
under study to sensitize cancer cells to anti-cancer drugs.[52,53]

For instance, if we restore dependency to a growth stimulus, then
cancer cells can be treated with inhibitors of growth stimulus
responses.[8]

We identified reversion targets, AKT and MAP3K1_3 in blad-
der cancer cell lines. Here, AKT has been suggested as a thera-
peutic target for cancer,[54] and there has been success in clinical
trial by combinatorial therapy using a chemotherapeutic agent
and an AKT inhibitor in metastatic breast cancer.[55] This sug-
gests possible clinical applications of this target in other cancer
types, including bladder cancer. On the other hand, MAP3K fam-
ily genes have been suggested cancer-association factors,[56–58]

but there is no clinical trial directly related to this target due to
lack of selective MAP3K inhibitors. In addition, there are other
known reversion therapeutic targets, TPT1/TCTP and SETDB1

from previous studies.[2,3,43] Although these studies do not pro-
vide Boolean network models, we can still suggest that the cancer
reversion induced by inhibiting each target is comparable with
the normalization of IO relationship. TPT1/TCTP is the first tar-
get for inducing cancer reversion, which is currently in a clini-
cal trial.[59] This gene forms a feedback loop with P53 which is
known to mediate density-dependent growth arrest.[60] In this
case, we can presume that the density is an input node and the
growth arrest is an output node of a subnetwork within the entire
complex P53 network. When TPT1/TCTP is highly expressed,
P53 cannot mediate the density-dependent growth arrest, which
can be considered as an interruption of IO relationship. When
TPT1/TCTP is repressed, however, P53 can mediate the density-
dependent growth arrest, which can be interpreted as the normal-
ization of IO relationship.[60] Hence, we can classify TPT1/TCTP
as a C1 node. Finally, Lee et al. found that expression levels of
the identified five transcription factors were similar in normal
and cancer cells even though these cells had differentially ex-
pressed genes that are regulated by these transcription factors.[43]

SETDB1 was identified as the potential mediator of these tran-
scription factors in cancer cells. In this case, the five transcription
factors can be considered as input nodes and the genes that are
differentially expressed in normal and cancer cells can be consid-
ered as output nodes of the underlying gene regulatory network.
Here, SETDB1 can be classified as a C1 node since its expres-
sion interferes with the IO relationship whereas its inhibition
normalizes the IO relationship. Low expressions of TPT1/TCTP
and SETDB1 are correlated in leading to a better prognosis of
breast cancer and colon cancer patients, respectively, which sup-
ports clinical benefits of the IO relationship normalization.[43,60]

Cancer reversion might be a promising future cancer treat-
ment strategy that can be an alternative to current cancer ther-
apy which aims at only killing cancer cells. Current anti-cancer
therapies have inevitable side effects such as the death of nor-
mal stem cells. In contrast, cancer reversion would have much
less (or negligible) side effects as it does not aim at killing can-
cer cells. Although cancer immunotherapy and targeted therapy
have fewer side effects than traditional cytotoxic drugs, the aim
of these treatment strategies is still to kill cancer cells, and thus
the applicability of these methods is limited. In contrast, the tar-
gets of cancer reversion are C1 genes, and interventions on these
genes have no effect on the IO matching of normal cells. On the
other hand, interventions on C2 or C3 genes would interfere with
normal IO matching and thereby cause side effects by inducing
cell cycle arrest or apoptosis of normal cells. It is also worthwhile
to note that identified targets for cancer reversion in many cases
would be novel drug targets. As cancer reversion does not di-
rectly induce the death of cancer cells, targets for cancer rever-
sion would have been neglected during the target identification
process of conventional anti-cancer drug discovery. By changing
the concept of cancer therapy, we can identify novel drug targets
and have new opportunities to develop completely different thera-
pies for cancer patients. We also need to note that any anti-cancer
drugs that induce apoptosis would accelerate the clonal evolu-
tion of cancer cells and eventually result in acquired resistance.
In contrast, the cancer reversion approach would maintain can-
cer cell populations and suppress their growth, affecting only the
fitness of natural selection. Hence, cancer reversion would not
incur such acquired resistance.
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4. Experimental Section
Boolean Network Models and Expanded Networks: The Boolean net-

work model, which is the historically oldest discrete state logical models
for dynamical systems, was proposed by Kauffman.[61] Boolean networks
represent the dynamics of an influence (regulatory) network in which
nodes influence the activity values of each other via edges. Nodes can
take the state being off or on, taking the Boolean values 0 or 1, respec-
tively; edges represent the regulatory interactions (influences) between
two nodes and represent the modality of the influence (e.g., activation or
inhibition). The latter is formalized by the Boolean function fi associated
with node i, which integrates the values of its input nodes to update its
value. Thus, to represent the states of a Boolean network, a state vector
x(t) at specific time t is defined as x (t) = (x1(t), …xi(t),…, xN(t)); N is the
number of nodes of a network and xi(t) is a state of the i-th node at time t.
Because the value of a node is either 0 or 1, x(t) is represented as an n-bit
binary vector. The value of the i-th node is updated at each discrete time
step by a Boolean function fi(xj∈Ii ); Ii is the set of upstream regulators that
serve as inputs of the i-th node and xj∈Ii is a state vector of all regulating
nodes. Thus, x (t + 1) = (f1(x(t)j∈I1

), … fi(x(t)j∈Ii
),… , fN(x(t)j∈IN

)). If x
(t + L) = x(t), then the sequence of states from x(t) to x(t + L − 1) is a
cyclic attractor for L > 1. If L = 1 and thus x (t + 1) = x(t), then x(t) is
a point attractor. When the i-th node is mutated, the Boolean function of
the mutated node is f

′

i (xj∈Ii ) = 0 or f ′i (xj∈Ii ) = 1 for an LOF mutation or
GOF mutation, respectively.

An expanded network is a graphical representation of the logical dy-
namics of a Boolean network.[14] Nodes of the expanded network repre-
sent the states of nodes of the original Boolean network, hence the ex-
panded network has at least a double number of nodes compared to the
original network. Each link of the expanded network represents the suffi-
cient relationship between node states: simply OR logic. If a node of the
expanded network has only one incoming link, then the start node of that
link is the sufficient and necessary condition. The expanded network has
composite nodes that work as AND logic gates, and thus the start node
of an incoming link to a composite node is a necessary condition for the
end nodes of an outgoing link from the composite node. The LDOI of an
intervention can be obtained by iteratively searching nodes downstream
of the intervened node on an expanded network using a modified breadth-
first search (BFS)—which is different from the original BFS—to handle the
composite nodes.[14]

Input–Output Matching of Boolean Networks: The IO relationship of a
Boolean network can be represented by a function R: I = {0, 1}l ↦O =
[0, 1]m , with l ≥ 1 input node states I = {Ii}

l
i=1 and m ≥ 1 output node

states O = {Oj}
m
j=1. To figure out the IO relationship of a Boolean network,

the states of input and output nodes are needed to identify from every at-
tractor state. However, identifying all attractor states of a Boolean network
is known as an NP-hard problem because the number of all possible ini-
tial states is 2N for a Boolean network with N nodes. To overcome such
complexity, the logical domain of influence (LDOI) was applied, which is
a sufficient set of stabilized node states, by fixing states of certain nodes
since LDOI can represent canalizing effects of Boolean functions without
regard to the initial state of nodes.[14] By using LDOI, the IO relationship
of a Boolean network can be inferred and defined it as “IO matching”
such that M : I → ‚O = {0, 0.5, 1}m with inferred states of output nodes
‚O = {Ôj}

m
j=1.

The IO matching M : I → ‚O is defined by employing the LDOI as fol-
lows:

Ôj =

⎧⎪⎪⎨⎪⎪⎩

0, if
{

Oj = 0
}
∈ LDOI (I)

1, if
{

Oj = 1
}
∈ LDOI (I)

0.5, if
{

Oj = 0
}
∉ LDOI (I) and

{
Oj = 1

}
∉ LDOI (I)

(1)

As LDOI is a sufficient set of the stabilized node states (10), IO match-
ing is sufficient for IO relationships. Ôj = 1 (or 0) implies Oj = 1 (or 0),

and if Ôj = 0.5, then it implies that 0 < Oj < 1. When an input node state

is matched to the inferred states of all output nodes as 0.5, it is defined
as nondeterministic IO matching. Otherwise, it is defined as deterministic
IO matching.

The complexity of LDOI is bounded by O(k2N)[14] where k is the average
of in-degree distribution and N is the number of nodes in a network. Our
method considers all possible input node states, and thereby approxima-
tion of IO relationship is bounded by O(2I × k2N) where I is the number
of input nodes in the network. Finally, the method is bounded by O(2N ×
2I × k2N) for classifying C0 and C1 nodes, which requires simulation for
all possible single node mutation 2N, and bounded by O(4N2 × 2I × k2N)
for classifying C2 nodes which require simulations for double mutations.
C3 nodes are the rest of the nodes except C0, C1 and C2 nodes, and thus
no additional computation is required. Hence, the node classification of
our method is bounded by O(2Ik2N3), and our method can be applied in
analyzing a large-scale Boolean network model since the complexity can
be estimated by a polynomial of N and k where I is mostly a small number.

Random Configuration Boolean model: To analyze robustness, redun-
dancy, and reversibility, 1000 random directed configuration networks were
generated from the degree distribution of 10 Cell Collective networks (100
random networks for each Cell Collective network, Tables S1 and S2, Sup-
porting Information).[62] Boolean functions for random networks are de-
fined as canalizing Boolean functions as follows:

fi
(

xj∈Ii

)
=
⎧⎪⎨⎪⎩

a, if xc = b and c ∈ Ii

g
({

xj

}Ii

j≠c

)
(2)

with the canalizing variable xc, the canalized value a, and the canalizing
value b, which are determined randomly. g is a random Boolean function
with bias = 0.5 (e.g., unbiased random Boolean function).[63] Random al-
terations in the bladder cancer Boolean network model are based on Equa-
tion (2).

Robustness, Redundancy, and Reversibility of a Boolean network: The re-
versibility of a network is correlated to the ratio of C0, C1, and C2 nodes.
Thus, the reversibility V of a network is defined as:

V = 1 −
NT

N
(3)

NT is the number of C3 nodes in the network and N is the number
of nodes in the network. The number of simple paths between input and
output nodes determines the redundancy D of a network. However, some
pairs of input and output nodes are not matched as the states of these
output nodes are dependent on the states of the internal nodes. Thus,
simple paths were only dealt from every input node i to matched output
nodes j (Ôj ≠ 0.5):

D =
Nsp

Np
(4)

Nsp is the number of simple paths from every input node to matched
output nodes, and Np is the number of pairs of input nodes and matched
output nodes. As IO matching is dependent on the states of the input
nodes, an input node can be matched to an output node twice. Consider-
ing the excessive computation time to be taken to identify all simple paths,
simple paths were identified that are shorter than twice the length of the
shortest path between each input and output node.

The robustness to a mutation is measured by the average of the ratio
of retained primary attractors after one node mutation. 210 initial states
were sampled to identify the primary attractors of an original network
and a mutated network. When the primary attractors of the two networks
were compared, the different states involved in the mutated network were
ignored. As primary attractors can be cyclic attractors, which oscillate
between more than two states, the averaged ratio of states of primary
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attractors of both the original network and every single node mutated
network was calculated:

Bm =

∑
k
|{s |s∈(Ao∩Ak)}||{s|s∈Ao}|

2N
(5)

s is a network state, and Ao and Ak are primary attractors of the original
network and the mutated network, respectively. The robustness to pertur-
bation is measured by the ratio of initial states converging to the same
attractor independently of the single node perturbation. 210 initial states
were sampled and N perturbed states were generated for each initial state:

Bp =
∑

s∈𝕊
∑N

k=1 𝜃
(
As = Ak

s

)
|𝕊| (6)

𝕊 is a set of sampled initial states. As is an attractor reached from an
initial state s whereas Ak

s is an attractor state reached from a perturbed
state of the initial state s by flipping the state of the k-th node. 𝜃(l) returns
to 0 or 1 if l is false or true, respectively.

Defining Alteration of Bladder Cancer Cell Lines and Cancer Patients:
Molecular profiles of bladder cancer cell lines and cancer patients were ob-
tained from the cBioPortal (http://www.cbioportal.org).[64,65] Among the
data sets of cBioPortal, the Cancer Cell Line Encyclopedia data set was
used for bladder cancer cell lines,[66] published data of TCGA for blad-
der cancer patients,[67] and TCGA Pan-cancer atlas data for breast cancer
patients.[68] Alterations of genes are defined as i) genes with copy num-
ber alteration (CAN) and consistent mRNA expression (z-scores relative
to diploid samples, threshold ± 2.0) and ii) genes with a driver mutation
while having no low mRNA expression. For the bladder cancer cell lines,
alteration is defined as GOF alteration if the altered gene is an oncogene
or LOF alteration if the altered gene is a tumor suppressor in OncoKB
(https://www.oncokb.org).[31] Kaplan-Meier survival graphs were drawn
by using the Python package “lifelines.”[69]

Reagents and Antibodies: DMSO (Sigma-Aldrich, D8418), TGF-b1 (Pe-
proTech, 100-21), MK2206 (Selleck, S1078), and 5-FU (Selleck, S1209)
were used in this study. Anti-phospho-AKT (S473) antibody and anti-AKT
antibody were purchased from Cell Signaling Technology, Inc (Danvers,
MA). Anti-phopho-Histone H2A.X(S139) antibody was obtained from
Santa Cruz Biotechnology, Inc (Dallas, TX). The rabbit polyclonal anti-
GAPDH antibody was provided as a generous gift from Dr. Ki-Sun Kwon
(Korea Research Institute of Bioscience and Biotechnology).

Cell Culture: The KU-1919 cell line was generously provided by Dr. San-
Jin Lee (National Cancer Center Korea). KU-1919 cells were cultured in
RPMI 1640 (Welgene, Republic of Korea) supplemented with 10% fetal
bovine serum (FBS, Welgene), 100 U mL-1 penicillin, 100 μg mL-1 strepto-
mycin, and 0.25 μg mL-1 Fungizone (Life Technologies, Carlsbad, CA). The
HT-1197 cell line was purchased from the Korea Cell Line Bank and cul-
tivated in MEM (Welgene) supplemented with 10% FBS and 100 U mL-1

penicillin, 100 μg mL-1 streptomycin, and 0.25 μg mL-1 Fungizone. All cells
were cultured at 37 °C in a humidified 5% CO2 incubator.

Small Interference RNA Knockdown: Cells were seeded at ≈50% con-
fluence for siRNA transfection. Three different kinds of siRNAs targeting
MAP3K1 were obtained from Bioneer and mixed with equal concentra-
tions. AccuTarget Negative Control siRNA (Bioneer, Republic of Korea)
was used as the control for each experiment. siRNAs were transfected
with Lipofectamine RNAiMAX (Invitrogen, Waltham, MA) according to the
manufacturer’s instructions.

Quantitative Reverse-Transcriptase Polymerase Reaction: Messenger
RNAs were extracted by using the easy-spin Total RNA Extraction Kit (In-
tronbio, Republic of Korea). The synthesis of DNA from RNA templates
was performed using a DiaStar RT Kit (Solgent, Republic of Korea) and 2X
Taq premix (Solgent) according to the manufacturer’s instructions. Am-
plification of the synthesized cDNA was reacted using SYBR Master Mix
(GeNet Bio, Republic of Korea) and a QuantStudio5 qPCR machine (Ap-
plied Biosystems, Waltham, MA). The specific primer sequences were as
follows:

MAP3K1 fwd, 5′-CCAGACCAGTATCTCAGGAGATG-3′;
MAP3K1 rev, 5′-CCGCTAAACTGTGGCAAGGAGT-3′;
GAPDH fwd, 5′-TGATGACATCAAGAAGGTGGTGAAG-3′;
GAPDH rev, 5′-TCCTTGGAGGCCATGTGGGCCAT-3′.
Western Blot: Cells were lysed with lysis buffer (20 × 10-3 m Hepes

pH.7.2, 150 × 10-3 m NaCl, 1% triton X-100, 0.1% SDS, and 10% glyc-
erol) containing protease and phosphatase inhibitor cocktail (Thermo
Scientific, Waltham, MA). Cell lysates were mixed with 5X SDS- PAGE
Loading buffer (LPS solution) and separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis. Proteins of the lysates were transferred
from the gel to 0.2 μL nitrocellulose membranes (Pall Corporation, NY).
The membranes were then probed with primary antibodies and subse-
quently incubated with corresponding secondary antibodies conjugated
with peroxidase. The blot of the membrane was detected through en-
hanced chemiluminescence (Thermo Fisher Scientific). Images were taken
using a Fujifilm LAS-3000 imager (Fujifilm, Japan).

Crystal Violet Assay: Cells were rinsed once with 1× DPBS (Welgene)
and fixed with 4% PFA (Sigma-Aldrich). The fixed cells were stained with
1% crystal violet solution (Sigma-Aldrich), and the stained cells were sub-
sequently treated with 1% SDS (LPS Solution, Republic of Korea) solu-
tion in water. The optical density of the lysates was measured using a mi-
croplate reader (Bio-Rad, Hercules, CA).

Trypan Blue Assay: Floating cells and adherent cells were collected.
Dispersed cells were stained with Trypan Blue Stain (0.4%, Gibco,
Waltham, MA) and loaded on Cell Counting Slides (Bio-Rad), and counted
for viability using an Automated Cell Counter (Bio-Rad).

Immunofluorescence: HT-1197 cells transfected with siRNAs were re-
plated on culture glasses. Adherent cells on culture glasses were fixed
with 4% PFA, which was followed by permeabilization with 0.1% Triton-
X-100 (sigma-aldrich). Fixed and permeabilized cells were incubated with
primary antibodies for one hour followed by incubation with Goat anti-
Mouse secondary antibodies conjugated with Alexa Fluor 488 (Invitrogen)
for 30 min at RT. The nuclei were stained with DAPI (4′,6-diamidino-2-
phenylindole, 1 μg mL-1) for 5 min. Prolong gold antifade reagent (Invit-
rogen) was used to mount coverslips. The fluorescence of the cells was
detected with a Zeiss Observer Z1 microscope equipped with Apotome 2
(Carl Zeiss, Germany). Image acquisition and processing were performed
with AxioVision 4.8 (Carl Zeiss).

Statistical Analysis: In the bladder cancer cell line experiments, statis-
tically significant differences were determined by a two-tailed Student’s t-
test (n = 4). Logrank tests among two patient groups were done by using
the function “logrank_test()” of the Python package “lifelines”[69] for blad-
der cancer patients (n = 276). Linear regression was done by the function
“lmplot” of the Python package “seaborn”[70,71] for random configuration
models (n = 306).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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