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Understanding andmanipulating cell fate determination is pivotal in biology. Cell fate is determined by
intricate and nonlinear interactions among molecules, making mathematical model-based
quantitative analysis indispensable for its elucidation. Nevertheless, obtaining the essential dynamic
experimental data for model development has been a significant obstacle. However, recent
advancements in large-scale omics data technology are providing the necessary foundation for
developing such models. Based on accumulated experimental evidence, we can postulate that cell
fate is governed by a limited number of core regulatory circuits. Following this concept, we present a
conceptual control framework that leverages single-cell RNA-seq data for dynamic molecular
regulatory network modeling, aiming to identify and manipulate core regulatory circuits and their
master regulators to drive desired cellular state transitions. We illustrate the proposed framework by
applying it to the reversion of lung cancer cell states, although it is more broadly applicable to
understanding and controlling a wide range of cell-fate determination processes.

Cell-fate determination is an evolutionarily well-conserved process through
which cells make critical decisions regarding their ultimate roles within a
multicellular organism1. This foundational process underpins functions that
are indispensable for all multicellular organisms, including the precise
orchestration of normal developmental pathways, the maintenance of
internal equilibrium (homeostasis), and the facilitation of adult tissue
regeneration. Due to its vital importance, cell-fate determination has
evolved to be highly resilient to various perturbations.Nevertheless, seminal
experimental findings have revealed that the predetermined destiny of a cell
can be dramatically reshaped by a few molecular modifications. For
instance, the overexpression of Yamanaka factors OCT4, SOX2, KLF4, and
c-MYC (OSKM)-can reprogram differentiated fibroblasts into induced
pluripotent stem cells2. Moreover, ectopic activation of Yes-associated
protein can transdifferentiate terminally differentiated hepatocytes into
biliary epithelial-like cells3. In addition, adenomatous polyposis coli
restoration is able to reverse colon carcinoma cells back to a functionally
normal state despite the presence of potent oncogenic mutations4. These
findings collectively highlight that predisposed cell fates, in principle, can be
changed bymanipulating a few specific molecules, called master regulators,
while remaining highly robust against most other molecular perturbations.
This perspective further raises the following challenges: how canwe identify
the master regulators, and through what molecular regulatory mechanisms
do they induce cell-fate changes?

Cells are dynamic systems composed of intricate signaling pathways
interconnected by various feedbacks and crosstalks, forming a complex
network5,6. The regulatory relationships within this network are pre-
dominantly nonlinear, adding layers of complexity that defy simple, intui-
tive predictions about howaltering a specificmoleculemight impact cellular
functions7,8. The inherent complexity and nonlinearity present significant
challenges in understanding the principles underlying cell-fate determina-
tion and its control. To comprehend the intricate networks of intracellular
molecular regulations, a systems biology approach that integrates quanti-
tative mathematical modeling with molecular experimentation is
indispensable.

In this perspective, we argue that the integration of newly emerging
dynamic information with mathematical models enables us to not only
decode the fundamental principles embedded in the process of cell-fate
determination, but also to exert control over this intricate process to the
degree that was previously unachievable. In particular, we propose that
althoughcell-fatedetermination accompanies genome-widemolecular state
changes, it might be underpinned by only specific subnetworks within the
network, which we refer to as ‘core regulatory circuits’. These circuits are
instrumental in orchestrating the intricate sequence of events that deter-
mine cell fate. Based on this, we present a conceptual framework that
employs single-cell RNA-sequencing (scRNA-seq) data to identify and
manipulate core regulatory circuits determining cell fate. By applying this
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framework to scRNA-seq data of tumorigenesis, we propose a system-level
approach to identify molecular candidates for cancer reversion and their
molecular mechanisms through which deregulated gene regulatory
dynamics are rewired, and cancer hallmarks can be compromised to rees-
tablish normal phenotypes.

Representing cell-fate changes by complex molecular
network dynamics
Cellular functions are orchestrated by a gene regulatory network
(GRN) composed of tens of thousands of genes, intertwined through
intricate nonlinear interactions. Network dynamics can be con-
ceptualized through Waddington’s landscape, an intuitive model that
illustrates how cells navigate through various states within a high-
dimensional state space9 (Fig. 1a). In this landscape, valleys corre-
spond to specific cell types, known as ‘attractors’, representing stable
states that cells naturally settle into10. Building on this, the concept of
‘attractor landscape’ further illustrates the array of potentially stable
states that cells can adopt. The basins surrounding these attractors
indicate the probability of cells adopting each phenotype, offering
insights into the dynamics and probabilities of cell-fate transitions. In
this context, cell fates can be regarded as the most probable states a cell
can occupy within the attractor landscape, reflecting their potential
transition trajectories. In principle, the predetermined cell fates can be
changed by altering the attractor landscapes of cells by rewiring the
core regulatory circuits that underlie their complex molecular
interactions11,12 (Fig. 1a). Can Waddington’s landscape metaphor be
used for a quantitative description of actual cell-fate determination?
Moreover, can it be applied to cell-fate inference and control?

Such ametaphorical landscape can be quantitatively described through
mathematical models (Fig. 1b). These models formalize the state of a cell at
time t by the collective value of each molecular state in the network. For
example, a network composed of n genes can be represented at time t by the
state vector xðtÞ ¼ x1 tð Þ; x2 tð Þ; . . . ; xnðtÞ

� �
. In this vector, xi tð Þ for i 2

1; 2; . . . ; nf g denotes the state of the ith gene at time t, and thus, xðtÞ
corresponds to a point in ann-dimensional gene expression state space. The
state of each molecule is influenced by the GRN, where the future state of
each molecule is determined by nonlinear interactions with its upstream
molecules. Consequently, a cellular state evolves over time as a
nonlinear function of all molecules in the network, xðt þ 1Þ ¼
F x1 tð Þ; x2 tð Þ; . . . ; xnðtÞ
� �

, converging towards a particular state (or a set of
states) in the state space, which is called the attractor state. Empirical esti-
mation of the network structure and nonlinear function parameters from
experimental data is essential for a reasonably accurate model of cell-fate
determination. However, obtaining the dynamic data needed for the esti-
mation has been experimentally challenging. Fortunately, recent advances
in single-cell omics and related analytical technologies can now provide the
necessary temporal data required for the construction of comprehensive
mathematical models.

Methodologies available to construct mathematical
models using single-cell omics data
Single-cell sequencing technologies are advancing rapidly and are now
capable of analyzing datasets, including transcriptomes, epigenomes, and
proteomes from hundreds of thousands of cells. In particular, RNA
sequencing has emerged as the leading technique in single-cell omics13.
Sequencing RNA at the single-cell level allows for a detailed examination of
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Fig. 1 | Cell-fate changes through the lens of the complex dynamics of molecular
networks. a Cell-fate changes in the epigenetic landscape. Waddington’s landscape
is widely recognized as a conceptual framework to comprehend the transitions of
pluripotent cellular states toward specific valleys that represent distinct cell fates. In
the landscape metaphor, these cell fates are separated by an epigenetic barrier that
restricts transitions, yet the perturbation of a specificmaster regulator can overcome
this barrier to induce a dramatic transition between cell fates (top). Each cell fate can
be regarded as themost stable state (also referred to an attractor) within the attractor
landscape, which represents their transition trajectories (middle). Since each cell
fate is characterized by the gene activities of the underlying molecular regulatory
network, altering these complex molecular interactions by regulating a specific
master regulator can reshape the attractor landscape, causing it to converge into a

specific cell fate (bottom). bAmathematical model to unravel the hiddenmolecular
regulation logic of cellular systems. A mathematical model can describe the
dynamics of cellular systems in terms of gene regulatory interactions. The model
can formalize cellular phenotypes such as proliferation, cell cycle arrest, and
apoptosis, by assembling molecular components into the network. For example, a
logical dynamic model is composed of n genes, whose state at time t, defined by
xðtÞ ¼ x1 tð Þ; . . . ; xnðtÞ

� �
, corresponds to a point in a n-dimensional gene expression

state space represented by the attractor landscape. The state of each molecule is
influenced by its dynamic regulations, where the future state of eachmolecule can be
determined by a logical equation (e.g., AND gate) of its upstream molecules. A
cellular state evolves through the logical equations of all molecules in the network,
eventually converging on a specific attractor at time t =M.
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gene transcription, providing a high-dimensional fingerprint that identifies
unique cellular characteristics. Consequently, scRNA-seq has become an
invaluable tool for investigating cell identity and state transitions at the level
of individual cells. In this perspective, we focus on scRNA-seq.We illustrate
current methodologies for utilizing scRNA-seq data in studying cell-fate
determination, which encompass several critical stages as summar-
ized below.

The initial stage involves preprocessing raw count data (Fig. 2a). This
crucial first step, using tools such as Seurat14, Scanpy15, and Bioconductor-
based SingleCellExperiment16, involves rigorous quality control, normal-
ization, and feature selection, to establish a robust foundation for sub-
sequent analyses. Following preprocessing, the complexity of data is dealt
with through dimensionality reduction techniques like PCA17, t-SNE18, and
UMAP19, effectively simplifying the data while preserving its essential
characteristics (Fig. 2b). Following dimensionality reduction, clustering
algorithms such as Louvain20, Leiden20, DBSCAN21, and SINCERA22 are
used to group cells with shared identities. This step is followed by the
annotation of each clustered cell type using established biological knowl-
edge, and the identification of specific cell states that correlate with the cell
fates of interest.

To re-order cellular trajectories according to gene expression changes,
pseudotime analysis tools like Monocle323 are employed to map cell tra-
jectories from scRNA-seq snapshots (Fig. 2c). RNA velocity24,25, based on
vectors derived frommRNA splicing dynamics, also indicates the direction
and likelihood of cell state transitions. Additional methods like Slingshot26,
PAGA27, and FateID28 are also useful for inferring cellular dynamic trajec-
tories and quantifying cell-fate probabilities.

The next phase involves constructing a molecular regulatory
network (Fig. 2d, top), which infers molecular interactions from
previously processed data29, often utilizing mutual information to
understand nonlinear relationships within transcriptomic data. Tools
such as Scribe30 and CLR31, utilize mutual information to gauge
nonlinear transcriptomic relationships, and are instrumental in
building the molecular regulatory network. GENIE332, GRNBoost233,
PIDC34, LEAP35, and SCENIC36 are also widely used for this purpose.
Furthermore, by integrating different single-cell data modalities
(e.g., gene expression, chromatin accessibility), SCENIC+37, Pando38,
Dictys39, and CellOracle40 can estimate the regulatory effect of each
transcription factor (TF) on each gene mediated by specific regions of
DNA, and then infer the more specific GRN structure.

Fig. 2 | A process for constructing mathematical models using scRNA-seq data.
a Utilization of scRNA-seq data in studying cell-fate determination. Initially, tran-
scriptomic data is initially preprocessed to build a count matrix of cells by genes
derived from raw data processing steps. Next, the countmatrix is preprocessed using
tools such as Seurat and Scanpy. b Identification of specific cell fates. Dimensionality
reduction methods are applied to handle the complexity of the data, and clustering
algorithms group cells with shared identities. Subsequently, specific cellular states
related to the cell fates of interest are identified. c Inference of dynamic trajectories to
reveal cell-fate changes. Cellular trajectories are derived from gene expression
changes. In particular, Monocle3 and RNA velocity are generally used to infer

cellular dynamic trajectories from scRNA-seq datasets. d Inference of GRN struc-
tures and regulation dynamics. Molecular interactions are obtained from the pro-
cessed data. Furthermore, a network model can be constructed by inferring the
critical regulation dynamics involved in cell-fate determination by discrete or
continuous mathematical formalisms. e Dynamic control of network models. In
silico gene perturbation analysis with tools like CellOracle and scTenifoldKnk can
predict the effects of control target candidates. However, they lack insight into
regulatory dynamics represented by attractor landscapes. To tackle this limitation,
the future direction of research should progress beyond applying control theory to
elucidate the molecular mechanisms underlying cell-fate changes.
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In addition to the constructed GRN structure, mathematical models
are constructed by inferring and encapsulating critical regulatory dynamics
from scRNA-seq data (Fig. 2d, bottom). To construct a logical dynamic
model, methods such as BTR (BoolTraineR)41 and SCNS (single cell net-
work synthesis)42 can be employed. Building a Boolean network model
requires optimizingBoolean regulation logic. This process is tailored to each
algorithm used, such as the Z3 solver and the Quine-McCluskey (QM)
algorithm, and is performed on binarized data to ensure optimal precision.
Parallel to this, continuous dynamic modeling adopts a different approach.
Thismethod often involves deriving ordinary differential equations (ODEs)
or stochastic differential equations, with a particular emphasis on pseudo-
time ordering of the data43–45. For example, SCODE44 employs linear
regression techniques, whereas SCOUP45 utilizes a continuous diffusion
process and is designed to analyze single-cell expression data during dif-
ferentiation processes. This latter model, based on the Ornstein–Uhlenbeck
process, is especially adept at determining the interdependencies between
gene expression levels at distinct temporal points. Thismethodoffers amore
detailed understanding of cellular dynamics across various time points.

To summarize, we provide a brief overview of useful methods for
constructing mathematical models (Table 1). These models are invaluable
for identifying molecular targets, particularly master regulators, through
extensive systematic perturbation analysis using tools like CellOracle40 and
scTenifoldKnk46, which predict gene perturbation effects and identify key
cell-fate regulators (Fig. 2e). However, despite their advanced capabilities,
these methods require laborious processes that involve individually

controlling molecules and analyzing complex systems. Furthermore, these
tools do not inherently incorporate an understanding of system dynamics,
such as the attractor landscape, into their analyses. This poses significant
limitations on revealing the specific molecular regulatory mechanisms that
dictate cell-fate decisions. To address these challenges, control theory may
offer a new path forward.

Emerging significance of applying control theory to
explore core regulatory circuits and their master
regulators
Control theory is afield of study that focuses on systemcharacterization and
manipulation. It involves understanding how systems behave and devising
methods to achieve desired outcomes through control actions. This dis-
cipline has evolved over time to address vital challenges in complex systems.
In the early 20th century, Black’s development of the negative feedback
amplifier laid the groundwork for feedback control of simple systems47. In
the 21st century, Wolkenhauer, Kitano, and Cho introduced the inter-
disciplinary principles of systems biology, merging control theory with
high-throughput technologies for cellular research48. Aligned with this
evolution, in 2011, Barabási and Slotine made a significant advancement in
complex network control by integrating network science with control
theory49. Theirworkshighlighted the future focusonaddressing the intricate
interplay of elements in a nonlinear, networked system.

Current developments in complex network control theories have
evolved in two principal directions: one that focuses on the structural

Table 1 | A brief overview of available methodologies to construct network models

Methods Possible input
data types

Type of network
interactions

Analysis of regula-
tion dynamics

Default motif
database

Implementation URL

scRNA
-seq

scATAC
-seq

Signed Weighted

GENIE332/
GRNBoost233

O X X O X X Python
and R

https://github.com/aertslab

SINCERETIES79 O X O X X X R and
MATLAB

https://github.com/CABSEL/
SINCERITIES

PIDC34 O X X X X X Julia https://github.com/Tchanders/
NetworkInference.jl

LEAP35 O X O O X X R R package LEAP available
on CRAN

SCENIC36 O X O O X cisTarget Python
and R

https://scenic.aertslab.org/

SCENIC+37 O O O O X cisTarget Python
and R

https://github.com/aertslab/
scenicplus

scMTNI80 O O X O X CIS-BP C++ https://github.com/Roy-lab/
scMTNI

Pando38 O O O X X CIS-BP R https://github.com/
quadbio/Pando

CellOracle40 O O O O X CIS-BP Python https://github.com/morris-lab/
CellOracle

FigR81 O O O X X CIS-BP R https://github.com/
buenrostrolab/FigR

Dictys39 O O O O X HOCOMOCO Python https://github.com/pinellolab/
dictys

scTenifoldKnk46 O X O O X X R and
MATLAB

https://github.com/cailab-tamu/
scTenifoldKnk

BTR41 O X O X O X R https://github.com/
cheeyeelim/btr

SCNS42 O X O X O X F# and
Javascript

https://github.com/swoodhouse/
SCNS-GUI

SCODE44 O X O O O X R and
Julia

https://github.com/
hmatsu1226/SCODE

SCOUP45 O X O X O X C++ https://github.com/
hmatsu1226/SCOUP
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characteristics of networks and another that considers the inherent non-
linear dynamics within these networks. Controlling network centrality
determines the most influential regulators in network interactions using
metrics such as degree centrality, betweenness centrality, and eigenvector
centrality50. This approach often aims to identify a minimal subset of driver
nodes required to direct a network from any given state to a specific desired
state51. In contrast, strategies for controlling network dynamics, like logical
domain of influence (LDOI)52, feedback vertex set (FVS)53, stable motif54,
searching for differential expressed positive circuits (DEPCs)55, and global
stabilization analysis56, were suggested tomanage state transitions caused by
the network dynamics. These methods collectively aim not only to identify
‘control targets’, defined as a specific set of nodes capable of steering the
system towards a set of desired states, but also offer tools for analyzing
molecular regulatory mechanisms. For instance, stable motif analysis has
been instrumental in uncovering crucial feedback loops that govern pro-
cesses like the epithelial-to-mesenchymal transition57, leukemia cell-fate
decisions54, and the differentiation of helper T cells54. In addition, the LDOI
approach has identified key control targets and their influences, and the
DEPC method has discovered related positive circuits to stabilize a certain
attractor55. While these methods provide solutions for controlling theore-
tical model systems, some result in suboptimal solutions with unnecessary
targets, and yet others face scalability issues, rendering them limited to very
small-scale models. Furthermore, to our knowledge, there has been no
attempt to systematically identify both control targets and the resulting fate-
determining paths (or circuits) revealing specific molecular regulatory
mechanisms. Thus, identifying optimal control targets (i.e., master reg-
ulators) and the resulting core regulatory circuits for real-world cell-fate
control remains a significant challenge.

To address the aforementioned challenge, leveraging the key biological
features that play a role in cell-fate determination could be an essential
strategy.Manyprevious experimental studies have already shown thatwhile
cell systems are comprised of a complex large network, a core regulatory
circuit, composed of only a few key molecules, plays a crucial role in
determining cell fates58–61. In particular, such core regulatory circuits are
often composed of multiple nested feedback loops, with at least one being a
positive feedback loop. For example, in quorum sensing, molecules like
N-acyl homoserine lactone (AHL) in bacteria facilitate population-wide
communication62; the regulatory feedback between TFs OCT4, SOX2, and
NANOG maintains pluripotency in embryonic stem cells63; the double
negative feedback loop between PU.1 and GATA1 controls the erythroid
versusmyeloid lineage commitment64; and the interconnected SNAIL/miR-
34 and ZEB/miR-200 feedback loops are key regulatory components of the
epithelial–mesenchymal transition (EMT) process in cancer metastasis65

(Fig. 3a). Furthermore, combinations of feedback and feedforward controls
can generate biological transitions reliably in noisy environments where the
activity of individual components can vary over a range of parameters66.
Those previous studies indicate the significance of specific feedback
mechanisms within core regulatory circuits in governing crucial cellular
processes. This leads to the following question: how can we identify these
core regulatory circuits and their master regulators?

To computationally resolve this problem, the concept of a network
kernel has been introduced, encompassing the ‘kernel’ method for simpli-
fying networks67 and the ‘control kernel’ approach for altering attractor
landscapes with minimal regulators68,69. These kernel-based approaches are
crucial for focusing on and controlling the core regulatory circuits that
govern vital biological phenomena. Similarly, since cellular circuits with
positive feedback loops induce multistationary behavior, identifying and
analyzing the properties of feedback loops can offer critical clues to deter-
mine core regulatory circuits within large networks69–71. Another algorithm,
‘OpitCon’, can identify combination targets using a subgraph based on
structural controllability theory, and thendescribe specific core downstream
subnetworks and their crosstalk links that contribute to therapy resistance72.
More recently, Rukhlenko et al.73 developed a novel framework called
‘cSTAR’. This method uses omics data to classify cell states and transforms
them into mechanistic models. These models consist of a key molecular

regulatory network that is instrumental in controlling the attractor land-
scape that governs cell-fate determination. Moreover, systematic pertur-
bation to themodel helps to identify control targets for the desired change in
cell fate.

Based on previous studies, we postulate that core regulatory circuits
consist of subnetworks interconnected by feedback loops, and that these
circuits are the primary drivers of cell fate. Further advancing this concept,
we can propose a detailed procedure as follows. First, we can investigate all
feedback loops associated with different cellular states of interest (Fig. 3b).
Subsequently, through an analysis of network dynamics influenced by
feedback loop states, we can prioritize the positive feedback loops that are
instrumental in controlling the attractor landscape governing cell-fate
determination (Fig. 3c). For this, we can employ previous control methods
such as LDOI52, stable motif54, and DEPC55, or improve these methods for
further exploration of key subnetworks. As a result, the prioritized feedback
loops can be refined to form a core regulatory circuit. Lastly, through sys-
tematic perturbation to the model (or core regulatory circuit) or by
employing the improved kernel-based methods, we can identify (minimal)
master regulators for the desired cell-fate change (Fig. 3d). Together, this
control theory-based approach would be a highly promising way to
understand and manipulate cell-fate processes, centered around core reg-
ulatory circuits, of a dynamic system.

From this, we integrate aforementioned progresses and suggest a
comprehensive framework for systematically identifying core regulatory
circuits and their master regulators for cell-fate change (Fig. 4). This fra-
mework consists of three interconnected components: capturing dynamic
information from single-cell omics data, constructing and analyzing a
mathematical model of molecular mechanisms in cell-fate determination,
and identifying the candidates of master regulators for a desired cell-fate
control (Fig. 4a–c). To explicitly introduce our framework, we provide an
illustrative example as follows.

Illustrative example: identifying control targets for
cancer reversion by using single-cell RNA-sequencing
data from lung cancer samples
Traditional anticancer therapies have focused on removing cancer cells, but
their effectiveness is limited due to the inevitable emergence of resistance,
which arises as a consequence of cancer cell plasticity. Cancer plasticity is an
emerging hallmark of cancer cells, and it plays a crucial role in cancer
initiation and progression, as well as adaptation to therapy and intra-
tumoral heterogeneity74–76. Hence, recent research has shifted focus towards
targeting highly plastic cancer cells emerging during tumorigenesis, aiming
to inhibit their development.

This illustrative example shows the emerging concept of ‘cancer
reversion’, which seeks to transformhighlyplastic lungcancer cells back into
normal cells, instead of merely eliminating cancer cells. Recent studies have
indicated that cells with high plasticity emerge during mouse lung tumor-
igenesis upon introduction of KRAS mutations into AT2 cells, which are
typically considered the origin of lung cancer. These cells lose their original
characteristics and transition through AT1/AT2-like states, eventually
diversifying into various cancer cell types such as EMT-type, embryonic
liver-like, GI-like, and high-cycling cells, thereby increasing tumor hetero-
geneity (Fig. 5a).

In this illustrative example, we begin with obtaining time-series
scRNA-seq data collected during lung tumorigenesis fromAT2 cell state to
high-plasticity cell state (HPCS) from a public repository77. This dataset
provides single-cell transcriptomic information for ~2200 cells. The pro-
posed framework entails preprocessing, dimensionality reduction, and
clustering to annotate cell identities at different stages during tumorigenesis.
Then, it conducts pseudotime ordering to delineate the trajectory fromAT2
cells, through intermediate states, toHPCS cells, providing a comprehensive
map of cellular evolution during lung tumorigenesis (Fig. 5b).

The proposed framework identifies critical TFs that can regulate gene
expression changes along the lung tumorigenesis trajectory by comparing
the activities of TFs among the distinct cell clusters. Then, the interactions
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among these TFs can be inferred, resulting in a GRN structure consisting of
105 nodes and 304 links (Fig. 5c). Next, to explore essential regulatory
mechanisms associated with specific phenotypes, the framework can
investigate all positive feedback loops showing differential activation
between AT2 and HPCS states by evaluating their TF activities. By aggre-
gating those feedback loops, the framework generates a reduced GRN,
consisting of 23 nodes and 74 links, which contains key dynamical infor-
mation (Fig. 5d). Intriguingly,TFswithin the same state (e.g.,AT2orHPCS)
are primarily interconnected throughmutually activating positive feedback,

whereas TFs across distinct states (e.g., AT2 versus HPCS) engage pre-
dominantly through mutually inhibitory interactions.

With the GRN structure and trajectory information, a Boolean logic
model can be constructed to simulate the tumorigenesis process. This
process involves discretizing the continuous expression values of each TF
along the pseudotime trajectory (employing clustering methods like
k-means). Subsequently, the influence of each TF in the GRN structure can
be determined through Boolean logic functions, utilizing theQMalgorithm
(Fig. 5e).Using theBooleannetworkmodel, the framework canpinpoint the
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dynamics at the network-level. The molecular regulatory network is useful to
describe the regulation dynamics inferred from transcriptome data in response to a
stimulus. From these molecular regulations, all feedback loops are investigated to
find out an essential subnetwork. c Core regulatory circuit for cell-fate determina-
tion. As each cell fate is defined by the gene activities within themolecular regulatory
network, alteration in a few critical molecular interactions can lead to a shift towards
a specific cell fate. In other words, a specific subnetwork composed of interconnected
positive feedback loops (referred to as a ‘core regulatory circuit’) is considered the

primary driver of cell-fate changes. For example, it could be a toggle switch, a well-
known designed circuit in cell-fate decision-making. d Elucidating the molecular
mechanism through a core regulatory circuit and its master regulator. Each cell fate
can be regarded as an attractor within the attractor landscape that includes the
transition trajectory. First, based on detailed analysis as outlined in b, c, a core
regulatory circuit essential for cell-fate determination can be extracted. Next, a
master regulator that governs the change of cellular states described by the core
regulatory circuit can be identified. Finally, the hidden mechanism underlying the
transition when the master regulator is controlled can be unraveled.
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feedback loops of the most dynamic significance (in this example, stable
motifs). These feedback loops and their corresponding LDOIs have the
potential to stabilize either phenotype when modulated. Then the frame-
work can assess the influence of the LDOIs onAT2 andHPCSmodules, and
prioritize key feedback loops based on their relevance to either phenotype
(Fig. 5f). The most influential feedback loops can form a core regulatory
circuit, consisting of Rel, Irf1, Irf7, Fosl1, Myc, and Relb. Once the core
regulatory circuit is stabilized, it can fix the values of most TFs within the
respective AT2 and HPCS modules.

The proposed framework then leverages information on core reg-
ulatory circuits tofind control targets that can inhibit theHPCSmodule and
activate theAT2module.TheLDOIs for individual nodes andpairs ofnodes
are calculated, then each LDOI is checked whether it can fix the influential
feedback loops in the desired state to identify control targets. For example, a
combination of Fosl1 (or Myc) and Nfkb2 can be identified as a master
regulator, thereby ensuring the stable activation of the AT2module and the
deactivation of the HPCS module (Fig. 5g). Inhibition of Fosl1 can deacti-
vate HPCS TF activities while having no impact on AT2 TFs. On the other
hand, disruption of Nfkb2 can de-repress AT2 TF activities in the HPCS
state, activating downstream regulators and leading to the re-emergence of

the AT2 state. Combined inhibition of E2f4 and Nfkb2 can destabilize the
HPCS state, and enable a stable activation of the AT2 module. This com-
binatorial inhibition strategy can, therefore, effectively disrupt the positive
feedback within the HPCS module while also neutralizing its negative
impact on the AT2 module. The result shows a stable shift from a highly
plastic cancerous state back to anormal-likeAT2 state.Moreover, the role of
key molecules in plastic cancer cells can be illustrated using the landscape
concept (Fig. 5h). In these cells, Fosl1 andNfkb2 are highly active, stabilizing
the HPCS while repressing the normal AT2 module. This ensures the
persistence of the HPCS. However, to revert HPCS back to normal, merely
inhibiting either Fosl1 or Nfkb2 is insufficient, as each alone does not fully
shift the landscape towards the AT2 phenotype. The positive feedback of
Fosl1 maintains the HPCS state, or the remaining activity of
Nfkb2 suppresses the AT2 module. Only the simultaneous inhibition of
both Fosl1 and Nfkb2 can significantly alter the landscape, favoring a shift
towards the AT2 phenotype.

In summary, this example illustrates how systems biology can be
applied to understand and manipulate cell-fate transitions in cancer. By
integratingmathematical modeling with experimental data, we can identify
crucial regulatory mechanisms that reverse cell states, offering new insights
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models, or in vitromodels. From this collected dataset, the dynamics of cellular states
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and potential therapeutic strategies in cancer treatment. Although this
example illustrates the whole process proposed for inducing cancer rever-
sion from public single-cell data, limitations are noted. Cell-fate determi-
nation is a complex phenomenon that encompasses changes not just at the
transcriptomic level but also across various molecular levels. The con-
tinuous development of technologies that utilize single-cellmultiomics data,
which integrate transcriptomic, proteomic, and epigenetic data, has been
pivotal. The use of such data can significantly enhance the proposed fra-
mework. In particular, the recent increase in single-cell multiomics data,
combining scRNA-seq and scATAC-seq, has been noteworthy. scATAC-
seq allows for the pruning of indirect regulation information from func-
tional regulatory relationships obtained from transcriptomic data by pro-
viding information on the open chromatin regions at promoter sites. This
enables the construction of more accurate GRN structures and,

consequently, the development of more precise mathematical models.
Furthermore, factors like the physiological state of a cell, not directly
included in omics data, can significantly influence cell fate78. Although our
framework does not directly incorporate such state information, it can be
indirectly reflected through TF activity within the GRN structure and its
mathematical model. The future availability of technologies for simulta-
neous measurement of the physiological and molecular states of a cell
promises the development of models that integrate these dimensions for a
comprehensive understanding.

Conclusions
Among the various molecules within a cell, only a few keymolecules have a
significant impact on cell fate. What distinguishes these master regulators
from other molecules? How can we identify those master regulators, and
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through what molecular regulatory mechanisms do they induce cell-fate
changes? To answer these questions, it is necessary to analyze and under-
stand the behavior of a huge molecular regulatory network within a cell. In
the past, such attempts were limited due to experimental constraints. Yet,
recent advances in single-cell omics technologies, along with a decade of
progress in network control technologies, enable us to answer these fun-
damental questions and usher in a renaissance for systems biology. The
conceptual framework we introduce can offer an unprecedented opportu-
nity for cell fate control by integrating the latest technological innovations
into a comprehensive, novel strategy.
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