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Control of Cellular Differentiation Trajectories for Cancer
Reversion

Jeong-Ryeol Gong, Chun-Kyung Lee, Hoon-Min Kim, Juhee Kim, Jaeog Jeon, Sunmin Park,
and Kwang-Hyun Cho*

Cellular differentiation is controlled by intricate layers of gene regulation,
involving the modulation of gene expression by various transcriptional
regulators. Due to the complexity of gene regulation, identifying master
regulators across the differentiation trajectory has been a longstanding
challenge. To tackle this problem, a computational framework, single-cell
Boolean network inference and control (BENEIN), is presented. Applying
BENEIN to human large intestinal single-cell transcriptome data, MYB,
HDAC2, and FOXA2 are identified as the master regulators whose inhibition
induces enterocyte differentiation. It is found that simultaneous knockdown
of these master regulators can revert colorectal cancer cells into normal-like
enterocytes by synergistically inducing differentiation and suppressing
malignancy, which is validated by in vitro and in vivo experiments.

1. Introduction

Cancer reversion has been proposed as a new therapeutic ap-
proach that aims to revert cancer cells into their differentiated
and non-malignant state,[1–5] by inducing re-expression of dif-
ferentiation associated genes.[6–8] Interestingly, in acute myeloid
leukemia, breast cancer, and hepatocellular carcinoma, it was
found that differentiation or trans-differentiation of cancer cells
can induce such reversion.[6–8] However, systematic identifi-
cation of master regulators that induce differentiation/trans-
differentiation remains elusive. If master regulators across nor-
mal differentiation processes can be identified and utilized to reg-
ulate cancer cells, they may constitute an alternative approach to
overcome the limitations of current anti-cancer therapies.

Despite the importance of identifying master regulators of cel-
lular differentiation, it remains a challenging problem due to
the complex and strongly nonlinear nature of gene regulation.[9]
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Hence, there is a pressing need to develop a
computational framework to identify mas-
ter regulators that encompass dynamic pro-
cesses in cellular differentiation. Although
the dynamics of Boolean networks may ap-
pear overly simplistic in contrast to the intri-
cate nature of biological systems, they still
represent the essential features of biologi-
cal mechanisms, making Boolean network
modeling an appropriate approach.[10,11] In
previous studies, Boolean network model-
ing of cellular differentiation was proposed
by constructing the structure of gene reg-
ulatory networks (GRNs) based on corre-
lation coefficients, performing pseudotime
analysis, and using Boolean satisfiability
(SAT) solvers to infer Boolean logics.[12]

However, such studies have shown problems including limited
scalability, incompleteness in elucidating specific structural in-
formation, and the assumption of irregular time point inter-
vals in inferring the regulation logics of Boolean network mod-
els (Table S1, Supporting Information). To overcome these lim-
itations, we develop a computational framework for single-cell
Boolean network inference and control (BENEIN).

BENEIN can reconstruct Boolean models of GRNs and iden-
tify a set of master regulators, whose regulation leads to the de-
sired cellular differentiation.[13,14] In particular, BENEIN splits
the transcriptional status of each single-cell into pre- and post-
transition states using the exonic and intronic information of
transcripts and infers the regulation logic of the underlying
GRNs by assuming that the two states before and after the state
transition correspond to exonic and intronic expression levels,
which also remains unbiased with respect to uneven cell clusters
upon the pseudotime trajectory. BENEIN further employs com-
plex network control to identify the master regulators that can in-
duce the desired cellular differentiation. BENEIN reveals insight
into hidden gene regulation dynamics and offers a systemic way
of controlling them.

Applying BENEIN to single-cell transcriptome data of adult
human intestine,[15] we identified a combination of master reg-
ulators, consisting of MYB, HDAC2, and FOXA2, which play a
critical role in blocking enterocyte differentiation. We examined
the regulation effects of these control targets by in silico analysis
of the reconstructed GRN model, as well as comparative anal-
ysis with various public transcriptome data. To further confirm
the effect of cancer reversion, we simultaneously inhibited these
targets in three colorectal cancer cell lines and xenograft mouse
models and found that their combinatorial inhibition strongly

Adv. Sci. 2025, 12, 2402132 2402132 (1 of 17) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedscience.com
mailto:ckh@kaist.ac.kr
https://doi.org/10.1002/advs.202402132
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadvs.202402132&domain=pdf&date_stamp=2024-12-11


www.advancedsciencenews.com www.advancedscience.com

induces differentiation into normal-like cells. This demonstrates
the potential for BENEIN to reveal novel control targets for dif-
ferentiation trajectories in cancer reversion.

In addition to applying BENEIN to adult human intestine
single-cell transcriptome data, we explored its utility in a different
organism and cellular context. We applied BENEIN to the gran-
ule neuron differentiation in the developing mouse hippocam-
pus. Through this process, we identified a combination of control
targets: Tcf4[16] (overexpression), Klf9[17] (overexpression), and
Etv4[18] (inhibition). These targets are known to play pivotal roles
in granular cell differentiation, as validated by literature. This ap-
plication of BENEIN highlights the capability of BENEIN not only
in reconstructing Boolean GRN models but also in identifying
control targets for control of the cellular differentiation trajecto-
ries in diverse contexts. These findings suggest that BENEIN is
a powerful tool for identifying control targets that are potentially
pivotal in cancer reversion and other biological processes.

2. Result

2.1. Overview of the BENEIN Workflow

To regulate cellular differentiation trajectories for cancer re-
version, we developed a computational framework, BENEIN.
BENEIN utilizes single-cell transcriptome data across a differen-
tiation process and quantifies the abundance of pre-mature and
mature mRNA reads. This quantification allows the transcrip-
tional status of each single-cell to be separated into two dynami-
cal states: pre- and post-transition states (Figure 1A). To recon-
struct an accurate Boolean model of the GRN based on these
pre- and post-transition states, BENEIN first infers potential reg-
ulatory structures between transcription factors (TFs) and their
target genes (TGs). To uncover temporal gene regulatory inter-
actions during the differentiation process, BENEIN groups cells
into several clusters along with the differentiation trajectory and
infers a structure within each cluster by computing conditional
mutual information (CMI)[19] and eliminating indirect interac-
tions between TFs and their TGs using the cisTarget database.[20]

BENEIN integrates these structures across the first half clusters
and establishes the regulatory network structure. Since the dy-
namics of the GRN are dominantly driven by TFs with complex
feedback structures,[21–23] BENEIN extracts the largest strongly
connected component (SCC) from the regulatory network struc-
ture (Figure 1B).

A Boolean network model is based on binarized ON/OFF
values, which requires that gene expression of pre- and post-
transition states are binarized. BENEIN achieves this by identify-
ing switching points on a phase plot of intronic and exonic reads
for each gene, and binarizing the intronic and exonic gene ex-
pression based on these switching points. As a result, BENEIN
generates two binarized matrices for the exonic and intronic
states in a gene-by-cell configuration. The binarized values for
the exonic reads represent the presence (ON) or absence (OFF)
of the TFs, whereas those for the intronic reads indicate whether
the genes are being transcribed (ON) or not (OFF) (Figure 1C).

By integrating the binarized matrices with the regulatory
network structure, BENEIN generates a truth table and con-
verts the truth table into a Boolean function by employing
the Quine-McCluskey (QM) algorithm.[24] By iterating this pro-

cess for all the genes in the network structure, BENEIN recon-
structs the Boolean GRN model that can represent the regula-
tory mechanisms underlying cellular differentiation trajectories
(Figure 1D–F).

To identify the master regulators of the Boolean GRN model,
we employed the BNSimpleReduction algorithm[25] and identi-
fied the minimal feedback vertex set (FVS)[26,27] which is a set
of vertices (genes) in a directed graph that will make the graph
acyclic when removed. The BNSimpleReduction algorithm re-
duces a Boolean GRN while maintaining the dynamical infor-
mation for the desired state. BENEIN applies the FVS control
algorithm to the reduced Boolean GRN model to identify mas-
ter regulators that can induce differentiation into a desired state
(Figure 1G,H) (Further details of BENEIN are provided in the Ex-
perimental Section).

2.2. Reconstruction of a Boolean GRN Model for Human Colon
Enterocyte Differentiation Using BENEIN

We applied BENEIN to intestinal single-cell transcriptome data
to examine its usefulness in inferring the Boolean GRN model
and controlling the differentiation process based on that model.
Among various human intestinal differentiation processes, we
focused on the enterocyte lineage since enterocytes play major
functions in the large intestine, such as water absorption. For
this purpose, we collected publicly available single-cell transcrip-
tome data[15] of normal human colon and rectum samples and
identified 4252 single-cells undergoing enterocyte differentiation
(Figures 2A and Figure S1, Supporting Information).

By applying BENEIN to the single-cell data, we inferred a GRN
structure of 522 genes and 1841 interactions, and extracted the
largest SCC including 17 TFs and 93 regulatory interactions. We
finally obtained an executable Boolean GRN model consisting of
13 TFs and 46 interactions (Figure 2B). Detailed regulatory log-
ics of the Boolean GRN model and supporting evidence obtained
from literature or databases are provided in Table S2 (Support-
ing Information). Despite the purely data-driven inference of the
framework, about 60% of the interactions inferred by BENEIN
coincide with the supporting evidence (Table S2, Supporting In-
formation). In addition, the general structural properties of the
GRNs are present in the reconstructed Boolean GRN model by
BENEIN (Note S1, Supporting Information).[28]

2.3. Boolean GRN Model Inferred by BENEIN Reflects the
Dynamics of the Original Single-Cell Data

To examine whether BENEIN can infer a Boolean GRN model
that properly represents the dynamics of a given single-cell tran-
scriptome data, we analyzed the dynamic properties of the re-
constructed Boolean GRN model of human colon enterocyte dif-
ferentiation. To compare the gene expression dynamics of the
single-cell data and the dynamics of the Boolean GRN model, we
first determined the binarized states for each cell type by ana-
lyzing the gene expression dynamics over the differentiation tra-
jectory. Intestinal stem cells and fully differentiated (FD) ente-
rocyte cells were annotated by LGR5 and KRT20 expression, re-
spectively. The binarized states for each cell type were then deter-
mined by computing whether a gene is activated or repressed in
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Figure 1. Schematic diagram of BENEIN for reconstruction of Boolean GRN from single-cell transcriptome data and identification of master regulators
for cancer reversion. A) BENEIN quantifies the abundance of pre-mature and mature mRNA reads to separate the transcriptional status of each single-
cell into pre- and post-transition states. B) BENEIN infers a potential regulatory structure between TFs and their TGs with a moving window strategy,
by computing CMI and then using cisTarget database for eliminating indirect interactions for each window. C) BENEIN converts gene expressions of
the pre- and post-transition states into the binarized forms, where a value of 1 indicates that the gene is switched on and a value of 0 indicates that the
gene is switched off. D–F) BENEIN infers Boolean functions for each gene by integrating the binarized matrices with the regulatory network structure
to construct truth tables, then employing the QM algorithm. By iterating the process, BENEIN reconstructs the Boolean GRN model. G) BENEIN
reduces the Boolean GRN model to its essential structure and finds minimal feedback vertex sets of the reduced network model to identify control target
candidates. H) The identified control targets are optimized and validated by attractor simulation.
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Figure 2. Inference and analysis of the Boolean GRN model for enterocyte differentiation. A) Single-cell transcriptome data of enterocyte differentiation
upon the UMAP embedding space with velocity stream plot (top) and pseudotime (bottom). B) The Boolean GRN model for enterocyte differentiation
constructed by BENEIN. Red and blue edges represent activation and repression, respectively. C) Heatmap illustrating the gene expression dynamics
along with the pseudotime. Gene expressions were binarized based on RNA splicing dynamics calculated by scVelo, then smoothed and converted
to z-score for improved visualization. Based on the gene expression dynamics, the binarized states for stem cell and enterocyte were determined by
comparing the average gene activation in the cluster of each cell type and the average gene activation of all the cells in the trajectory. D) State transitions
of the Boolean GRN model from a stem cell initial state (red) to an enterocyte attractor (blue) mapped onto the UMAP embedding space (see the
Experimental Section for details on determining the position of each network state upon the UMAP embedding space). E) 32 point attractors of the
Boolean GRN model mapped onto the UMAP embedding space, with the relative basin of attraction and Hamming distance between each attractor and
binarized expression of the nearest cell. Similarity scores of the attractors with respect to F) the stem cell state and G) the enterocyte state upon the
UMAP embedding space. The similarity score is defined by one minus the normalized Hamming distance between an attractor and the binarized state
of the cell type.

the cluster of each cell type compared to the average of all the cells
in the differentiation trajectory (Figure 2C). The FD enterocytes
exhibit high differentiation related signatures and low prolifera-
tion related signatures. In addition, we performed analyses with
various cutoffs of KRT20 expression and clustering parameters to
ensure the robustness of the FD enterocyte state. We showed that
the FD enterocyte state is robustly defined across various criteria
for determining FD enterocytes (Figure S2, Supporting Informa-
tion).

We investigated the state transitions of the Boolean GRN
model to examine how well they represent the differentiation
trajectory. This investigation was carried out by performing a
state transition simulation, starting from an initial state that rep-
resents the stem cell state, in order to obtain a simulated tra-
jectory of differentiation. It turns out that the simulated trajec-
tory from the initial state toward a steady state in the enterocyte
cluster closely resembles the differentiation trajectory observed
in the single-cell transcriptome data (Figure 2D). This similarity
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indicates that the Boolean GRN model can provide a reasonably
accurate representation of the differentiation trajectory through
its state transitions. To investigate the steady state properties of
the Boolean GRN model, we performed further simulation anal-
ysis and explored the attractor landscape, which is a set of stable
states known as attractors that a system eventually reaches, along
with the basin of attraction for each attractor. It is known that
these attractors are associated with particular cell phenotypes.[29]

The attractor landscape of the Boolean GRN model consists of
12 cyclic attractors and 36 point attractors. By mapping the point
attractors onto the uniform manifold approximation and projec-
tion (UMAP) embedding space,[30] we found that these point at-
tractors are well spread over the single-cell transcriptome data,
and that our GRN model can represent the overall features of the
data (Figure 2E).

To examine the characteristics of the steady states in the
Boolean GRN model, we defined the similarity score of each
steady state based on a Hamming distance between the bina-
rized state of each cell type and the steady states. By projecting
the similarity scores of each point attractor on the UMAP em-
bedding space, we observed a trend in the similarity score to
the stem cell/enterocyte state decreasing/increasing over pseu-
dotime (Figure 2F,G). This trend aligns with the conventional
understanding of stem cell differentiation toward enterocytes. A
detailed comparison between the gene expression patterns of the
single-cell transcriptome data and the dynamics of the Boolean
GRN model is provided in Figure S3 (Supporting Information).
We also assessed capability of BENEIN to predict the regulation
logic of downstream genes by incorporating the logic of TGs con-
trolled by the key TFs in the constructed Boolean GRN model.
Although these TGs do not alter the dynamics of the GRN model
since they do not further impact downstream elements, we built a
TG-inclusive GRN model consisting of 37 nodes. This model also
effectively captures the key regulatory dynamics of the differenti-
ation trajectory (Figure S4, Supporting Information). Overall, our
findings suggest that BENEIN accurately inferred the Boolean
GRN model of human colon enterocyte differentiation, incorpo-
rating both transient and steady state properties.

2.4. Identification of Optimal Control Targets for Induction of
Enterocyte Differentiation

To identify potential control targets for inducing the differenti-
ation of enterocytes, we employed the BNSimpleReduction al-
gorithm to reduce the reconstructed Boolean GRN model while
preserving the essential dynamics leading to the desired state.[25]

In this study, the desired state was chosen to be the attractor
with the highest enterocyte score. We then applied the FVS con-
trol algorithm to the reduced Boolean GRN to ensure that the
controlled Boolean GRN converges to a desired state regard-
less of the initial states.[26,27] As a result, we identified HDAC2,
MYB, SPDEF, PRDM1, and FOXA2 as potential control targets
(Figure 3A).

To reduce the number of control targets while ensuring suffi-
cient control efficacy, we examined all possible combinations of
the potential control targets by performing attractor simulations.
For each combination, we computed average activity vectors and

cosine similarities between them and the desired state (Table S3,
Supporting Information). As a result, simultaneous inhibition of
MYB, HDAC2, and FOXA2 exhibited the highest similarity of
≈0.97 (Figure 3B). We also performed 268 perturbation simula-
tions involving all possible combinations of three nodes within
the network, including knockdown and overexpression, and con-
firmed that the simultaneous inhibition of MYB, HDAC2, and
FOXA2 appears to be the most effective (Note S1, Supporting In-
formation). To further investigate the significance of the three
control targets for normal intestinal stem cell maintenance, we
utilized scTenifoldKnK[31] for the virtual knockdown of these tar-
gets. As a result, each control target was found to be essential
in maintaining intestinal stem cell characteristics. Furthermore,
those targets were significantly linked to the Wnt pathway, known
to play a vital role in maintaining normal intestinal stem cells[32]

(Figure 4A). Together, simultaneous inhibition of MYB, HDAC2,
and FOXA2 were identified as optimal control targets for entero-
cyte differentiation.

2.5. Analysis of Attractor Landscapes of Controlled GRNs

To explore the effect of regulating the identified optimal control
targets on the Boolean GRN model,[33] we analyzed the pheno-
type and attractor landscapes for all partial combinations of the
optimal control targets by performing attractor simulations[34]

(Table S4, Supporting Information). Here, the phenotype land-
scape refers to a map of phenotypes defined by the stable
states of specific output molecules within the attractor land-
scape. Given that the four attractors resulting from the simul-
taneous perturbation of MYB, HDAC2, and FOXA2 are located
within the fully differentiated enterocyte cluster, they can be con-
sidered as enterocyte phenotype states (Figure S5, Supporting
Information).

The unperturbed network has 48 attractors and the proportion
of the basin of attraction corresponding to the enterocyte pheno-
type state is only about 12.5%. As the number of perturbations in-
creased, the proportion of enterocyte phenotype states in the phe-
notype landscape increased, while the number of attractors de-
creased (Figure 3C). When all the control targets, MYB, HDAC2,
and FOXA2, were perturbed, the proportion of the basin of at-
traction corresponding to the enterocyte phenotype state became
100% (although there is a difference of 0.03 in the similarity be-
tween the average activity vector of the four attractors resulting
from the simultaneous perturbation of all the control targets and
the desired state, these attractors still corresponded to the ente-
rocyte phenotype from a phenotypic perspective).

To compare state transition trajectories of the unperturbed and
perturbed networks in response to regulation of control targets,
we chose an initial state representing a colon stem cell and con-
ducted state transition simulations from the initial state. Without
perturbation, the colon stem cell state transitioned to an undiffer-
entiated state through 13 trajectories with general asynchronous
state update[35] (Figure 3D). When the control targets were per-
turbed in the Boolean GRN, we observed transitions from the
colon stem cell state into the enterocyte state through 2412 trajec-
tories, which confirms that regulating the control targets is suffi-
cient to drive differentiation in our model (Figure 3E).
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Figure 3. Identification of optimal control targets for enterocyte differentiation and numerical simulations for the effects of control targets on the Boolean
GRN model. A) Identification of control target candidates. The original network is shown with red edges representing activation and blue edges repre-
senting inhibition (left). The reduced network was obtained by applying the BNSimpleReduction algorithm to the original network (middle). The minimal
FVS consisting of 5 nodes (HDAC2, MYB, SPDEF, PRDM1, and FOXA2) is marked in yellow in the reduced network (right). B) Optimization of the con-
trol targets. The bar plot shows cosine similarity between the desired attractor and the average activity of each perturbed network. The simultaneous
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2.6. Mechanistic Understanding of the Controlled Enterocyte
Differentiation

Both structure and logic of the Boolean GRN determine the state
transition dynamics of Boolean networks.[10,36] To elucidate the
underlying mechanisms by which regulation of the control tar-
gets induces enterocyte differentiation, we conducted an analysis
of the structure of the reduced Boolean GRN. Interestingly, we
found that the reduced Boolean GRN does not include any feed-
back loops that were present in the original Boolean GRN model,
resulting in a tree-shaped network. By hierarchically rearranging
the reduced network, we found that MYB, HDAC2, and FOXA2
are located at the top of the hierarchy, which indicates that they
can exert the greatest influence on the GRN and thereby serve as
direct driving factors for downstream genes, eventually leading
to the enterocyte state (Figure 4A).

We further investigated the logic of the Boolean GRN model
to analyze the regulation effects of MYB, HDAC2, and FOXA2
by computing and comparing the effectiveness of all links. Since
the effectiveness quantifies the canalizing effect, higher values
of the effectiveness indicate a higher probability that the affected
node will be canalized.[37] We computed the weighted out-degree
centrality of each node using the effectiveness as link weights,
where the weighted out-degree centrality represents the influ-
ence of nodes in the Boolean GRN (Table S5, Supporting In-
formation). As a result, we found that the control targets, MYB,
HDAC2, and FOXA2, have the highest weighted out-degree cen-
trality (Figure 4B). To further improve our understanding of such
node-specific influences, we employed a random forest regres-
sion model to calculate the importance of each node and found
that MYB, HDAC2, and FOXA2 are the most influential (Note S1,
Supporting Information). Moreover, we further investigated the
TGs of the 13 TFs in the Boolean GRN model to understand dif-
ferentiation of intestinal stem cells. In particular, regulons of the
activated TFs are associated with the differentiation of intestinal
enterocytes, while those of the inhibited TFs are associated with
cancer cell and stem cell properties (Figure S6, Supporting Infor-
mation).

To investigate whether the control targets have a synergistic ef-
fect, we defined a synergy score by dividing the number of canal-
ized nodes by an additive score for all combinations of the con-
trol targets (Table S6, Supporting Information) (Further details
on the definition and computation of the synergy score are pro-
vided in the experimental section). The combination of MYB,
HDAC2, and FOXA2 showed a remarkably high synergistic ef-
fect, while the other combinations had either no or relatively
small synergistic effects (Figure 4C and Figure S7, Supporting
Information).

Simulation analysis shows that simultaneous regulation
of MYB, HDAC2, and FOXA2 canalizes the CBX3, PROX1,
CREB3L1, ARID5B, SMAD3, FOXM1, and MXI1 nodes. To in-
vestigate whether these canalizing effects of MYB, HDAC2, and
FOXA2 are consistent with experimental results in normal cells,
we performed in vitro transcript quantification of the canalized
genes in the NCM-460 colon normal cell line. This normal
cell line was chosen as the representative non-cancerous colon
cell. We established the perturbed NCM-460 cells with double
(MYB+HDAC2, MH; MYB+FOXA2, MF; HDAC2+FOXA2, HF)
and triple knockdowns (MYB+HDAC2+FOXA2, MHF), then
measured mRNA expression levels of the canalized genes. The
simulation results were consistent with the experimental results
in the NCM-460 cells with simultaneous MYB, HDAC2, and
FOXA2 knockdown (Figure 4D). Concurrent analysis on HT-
29, HCT-116, and CACO-2 is provided in Figures S8–S10
(Supporting Information) and Table S7 (Supporting
Information).

Together, our analysis demonstrates that the simultaneous
perturbation of MYB, HDAC2, and FOXA2 has the most pro-
nounced influence on controlling the Boolean GRN model to-
ward the desired state and that the states of the downstream
nodes canalized by the control of MYB, HDAC2, and FOXA2
in simulation analysis largely agree with the results of in vitro
knockdown experiments on the colorectal cancer cells. Therefore,
MYB, HDAC2, and FOXA2 are master regulators in controlling
the Boolean GRN model toward an enterocyte state and could be
effective targets for cancer treatment.

2.7. In Silico Analysis Reveals That Inhibition of the Master
Regulators Has Potential for Cancer Reversion

Based on the in silico knockout analysis of the control targets in
normal intestinal stem cells using scTenifoldKnK,[31] we could
infer that the three control targets are associated with colon can-
cer signatures (Figure S11A, Supporting Information). Further-
more, from LINCS L1000 data analysis, we could also infer that
knockout of each control target is related to the differentiation
of colon cancer. These suggest that inhibition of each control
target is highly relevant to repressing colon cancer malignancy
(Figure S11B, Supporting Information). In addition, we per-
formed in silico knockout of each control target in pre-cancerous
cells from colon cancer and matched normal single-cell RNA-seq
data of Zheng et al. We also found the control targets can induce
reversion in benign tumor cells and pre-cancerous cells as well
as cancer cells (Figures S12 and S13, Supporting Information).

inhibition of MYB, HDAC2, and FOXA2 yielded the highest similarity (≈0.97) and were chosen as the optimal control targets. C) Attractor and phenotype
landscape of the unperturbed and each perturbed Boolean GRN model. All possible combinations within the optimal targets are considered. Numbers
on the attractor landscape indicate indices of the attractors, and the area indicates a basin of attraction for each attractor. Red/blue in the phenotype
landscape indicates a basin of attraction of the undifferentiated/differentiated enterocyte state, respectively. The perturbation corresponding to simul-
taneous inhibition of optimal control targets resulted in a 100% basin of attraction for enterocyte phenotype states. D,E) State transition trajectories
between unperturbed and controlled networks. The graph on the top illustrates all possible state transitions, with the most probable trajectory high-
lighted in green, along with the transition probability. The graph below illustrates the most probable trajectory with updated node states according to
the state transition. Color coding of the state ranges from red (stem cell state) to blue (enterocyte state). Without perturbation, the colon stem cell state
can transition toward an undifferentiated state through 13 possible trajectories (D). When the control targets were regulated, the colon stem cell state
would transition toward the enterocyte state through 2412 possible trajectories (E).
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Figure 4. The underlying dynamical regulation mechanism of enterocyte differentiation induced by regulating the control targets of the Boolean GRN
model. A) The transformation of the original network into a reduced network and its further rearrangement into a hierarchical network. The original
network is shown with red edges representing activation and blue edges representing repression (top left). The reduced network was obtained by
applying the BNSimpleReduction algorithm (top right). The reduced network is rearranged to visualize its hierarchical structure. Control targets are
colored green in each of the networks, and their canalizing effects on the downstream nodes are highlighted in yellow on the edges (bottom). B) The

Adv. Sci. 2025, 12, 2402132 2402132 (8 of 17) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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2.8. Simultaneous Knockdown of the Master Regulators Leads to
Suppressed Proliferation of Three Colorectal Cancer Cells In Vitro
and In Vivo

Based on in silico analyses, we knocked down the master reg-
ulators in the colorectal cancer cells and measured their pro-
liferation rate to examine whether the cancer cells can be re-
verted into normal-like cells. Notably, the proliferation rates of
the colorectal cancer cells with simultaneous knockdown were
dramatically decreased relative to those of single knockdown
(Figure 5A; Figures S14 and S15, Supporting Information). Our
in vitro results demonstrated that the simultaneous knockdown
of the master regulators reverts three colorectal cancer cells into
a normal-like differentiated state resembling enterocytes with re-
duced proliferation. To examine whether the knockdown of the
master regulators also suppresses proliferation in vivo, we es-
tablished three control colorectal cancer cell-engraftment nude
mouse models and three simultaneously knocked-down colorec-
tal cancer cell-engraftment nude mouse models. Notably, the vol-
ume and weight of HT-29, HCT-116, and CACO-2 engrafted tu-
mors with simultaneous knockdown of the master regulators
were significantly reduced compared to those of the three control
cells (Figure 5B–D). To examine whether simultaneous knock-
down of the master regulators effectively reduces proliferation
of colorectal cancer cells more than the cells with a single knock-
down in vivo, we also established three single knocked-down HT-
29 cancer cell-engraftment nude mouse models. The volume of
HT-29 engrafted tumors with simultaneous knockdown of the
master regulators was significantly reduced compared to those
with the single master regulator knockdown (Figure S16, Sup-
porting Information). These findings suggest that simultaneous
knockdown of the master regulators could be a promising thera-
peutic approach for the treatment of colorectal cancer.

2.9. Control of the Master Regulators Leads to Reversion of
Colorectal Cancer Cells into Differentiated Normal-Like
Enterocytes

After the influence of knocking down MYB, HDAC2, and FOXA2
on the proliferation of cancer cells was validated by in vitro and
in vivo experiments, we further investigated whether the simul-
taneous perturbation leads to reinstating the global gene expres-
sion of the three colorectal cancer cells into that of normal en-
terocyte cells. We measured transcriptome data of three colorec-
tal cancer cells with scramble knockdown (C) and simultaneous
knockdown of MYB, HDAC2, and FOXA2 (KD). By comparing
the transcriptome data from our three colorectal cancer cells with
those of colorectal cancer and adjacent normal samples from The

Cancer Genome Atlas (TCGA),[38] we confirmed that simultane-
ous perturbation of the master regulators can revert the three col-
orectal cancer cell states to the states resembling normal entero-
cytes. Interestingly, despite the transcriptomic heterogeneity of
the three colorectal cancer cells and diverse trajectories of can-
cer reversion according to the perturbation, the reverted cells ex-
hibit a strikingly similar transcriptomic state, analogous with the
transcriptome data of TCGA adjacent normal colorectal tissues
(Figure 6B). Normal colon and rectum gene signature scores are
also increased when the master regulators are simultaneously
controlled (Figure 6A,C). In addition, we validated the normal
colorectal features of the reverted colorectal cancer cells by West-
ern blot analysis at the protein level. KRT19, KRT20, and VDR,[39]

which are markers of colonic enterocytes, were increased in re-
verted colorectal cancer cells (Figure 6D; Figure S17B, Support-
ing Information).

We further investigated the underlying mechanism of rever-
sion achieved by perturbation of master regulators. We found
that MYC and WNT associated signature scores of the reverted
colorectal cancer cells (KD) were lower than those of the colorec-
tal cancer cells (C) (Figure 6A,E). We also validated the decrease
of TCF1, MYC, and 𝛽-catenin in the reverted colorectal cancer
cells by western blot analysis (Figure 6F; Figure S17C, Support-
ing Information).

We also conducted overexpression of master regulators inde-
pendently in three colon cancer cells (HCT-116, CACO-2, and
HT-29) and investigated expression changes of cancer-related
genes and markers of colonic enterocytes. We found that the over-
expression of the master regulators does not induce either more
a cancerous state or a normal-like reverted state in colon cancer
cells. We also conducted the overexpression of the master regu-
lators in NCM-460 cell line and did not observe increased prolif-
eration. However, protein expression levels of TCF1 and MYC
were relatively elevated (Figure S18, Supporting Information).
Together, these results indicate that simultaneous knockdown of
MYB, HDAC2, and FOXA2 can induce the reversion of colorectal
cancer cells.

2.10. Application of BENEIN to Mouse Granular Cell
Differentiation Shows the Generality and Flexibility of BENEIN

To examine the generality of BENEIN in a different organism
and context, we applied BENEIN to single-cell transcriptome data
from a developing mouse hippocampus, specifically focusing on
granular cell differentiation (Note S2, Supporting Information).
We performed scVelo analysis of granular cell differentiation tra-
jectory consisting of neural intermediate progenitor cells, neu-
roblast, immature granule, and granule cell types to calculate the

Boolean GRN model visualized with the effectiveness (edges) and the weighted outdegree centrality (nodes). Color coding of each edge represents
the effectiveness. Size of the node represents the weighted outdegree centrality, computed using effectiveness as weights (left). Bar plot showing the
weighted outdegree of the effectiveness of each node, in descending order (right). The control targets show the highest weighted outdegree. C) Bar plot
showing the synergy score for every possible three-node perturbation. The nodes are each symbolized with a unique number and color. The combination
of optimal control targets shows the highest synergy score. D) Comparison of the canalizing effect from the simultaneous perturbation of MYB, HDAC2,
and FOXA2 in the Boolean GRN model with the in vitro transcript quantification on NCM-460. The network is a subnetwork of the reduced network
from Figure 4A, consisting of the canalized nodes. Nodes are colored red (activation) or blue (inhibition) according to the canalization effect. The in
vitro transcript quantification results are shown in bar charts, with a scramble knockdown sample colored in gray and triple knockdown samples colored
in red (up-regulated) or blue (down-regulated). Data are presented as the mean ± SEM; n = 3 measurements (two-tailed t-test: *p < 0.05, **p < 0.01,
***p < 0.001) (NCM-460 with scramble knockdown, C; NCM-460 with simultaneous knockdown of MYB, HDAC2, and FOXA2, MHF).
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Figure 5. The simultaneous perturbation of control targets inhibited proliferation of three colorectal cancer cells in vitro and in vivo. A) The growth
curves of colorectal cancer cells (HCT-116, CACO-2, and HT-29) after knockdown of control targets (top). Cell growth rate was analyzed by IncuCyte.
Representative images of crystal violet staining of cells (bottom). Data are presented as the mean ± SEM; n = 3 replicates (two tailed t-test: **p < 0.01;
***p< 0.001). B–D) HCT-116, CACO-2, and HT-29 were injected to female athymic nude mice (Foxn1nu/nu) and proliferation of cancer cells was observed
in tumor-bearing mice. Changes in the volume of three colorectal tumors 23 days after tumor injection (B). Photographs of tumors resected after sacrifice
on day 23 (C). Tumor weight of a resected tumor (D). Data are presented as the mean ± SEM; n = 5 measurements (two tailed t-test: ***p < 0.001).
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Figure 6. Suppression of control targets reverts three colorectal cancer cells into normal-like enterocytes by inactivating MYC and WNT pathways. A)
Protein and mRNA expression levels of MYB, HDAC2, and FOXA2 in HCT-116, CACO-2, and HT-29 cells (Three colorectal cancer cells with scramble
knockdown, C; three colorectal cancer cells with simultaneous MYB, HDAC2, and FOXA2 knockdown, KD). B) Scatter plot on the upper layer shows
the transcriptome data from three colorectal cancer cells and their respective reverted cells in three colors (Green, HCT-116; Orange, CACO-2; Purple,
HT-29). Scatter plot on the lower layer shows the transcriptome data from TCGA colorectal cancer (red) and their adjacent normal (blue), along with the
gradient color of the background representing a support vector machine score for TCGA colon cancer expression. The x- and y-axes represent normal
colon cell and embryonic stem cell signature scores, respectively. C) Enrichment plot shows that the normalized enrichment scores (NESs) of normal
enterocyte signature were increased by simultaneous knockdown of the control targets for three colon cancer cells (top). Box plot displays results of
gene ontology analysis using genes up-regulated by the simultaneous knockdown of the control targets. The up-regulated genes are associated with the
normal colon signatures (bottom). D) Protein abundances were monitored by western blotting analysis of the representative genes of colonic enterocytes
(KRT19, KRT20, and VDR). E) Enrichment plots illustrate that the NESs of MYC (top) and WNT (bottom) signatures were decreased by the simultaneous
knockdown of the control targets for three colon cancer cells. F) Protein abundances were monitored by western blotting analysis of the representative
genes of MYC and WNT pathways (TCF1, MYC, and 𝛽-catenin). Transcript quantification by qRT-PCR is presented relative to that in the scramble shRNA
condition. GAPDH was used as a loading control. Data are presented as the mean ± SEM; n ≥ 3 measurements (two-tailed t-test: *p < 0.05, **p < 0.01,
***p < 0.001).

Adv. Sci. 2025, 12, 2402132 2402132 (11 of 17) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

 21983844, 2025, 3, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202402132 by K

orea A
dvanced Institute O

f, W
iley O

nline L
ibrary on [20/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

RNA velocity and pseudotime. Then, we reconstructed a Boolean
GRN model of granular cell differentiation using BENEIN, com-
prising 27 nodes and 123 links. We investigated the attractor land-
scape of the Boolean GRN model and found that the Boolean
GRN model properly represents the dynamics of granular cell
differentiation.

By designating the attractor representing the fully differen-
tiated granular cell as the desired attractor, we identified a set
of control targets for inducing granular cell differentiation us-
ing BENEIN, Tcf4 (overexpression), Klf9 (overexpression), and
Etv4 (inhibition). Each of these control targets has been previ-
ously reported as a key regulator in the differentiation of granular
cells.[16–18] Details of the application of BENEIN to mouse granu-
lar cell differentiation are provided in Note S2 (Supporting Infor-
mation). This application demonstrates the capability of BENEIN
to reconstruct Boolean GRN models as well as its proficiency in
identifying viable control targets for a given single-cell transcrip-
tome data.

2.11. Benchmarking BENEIN with SCENIC and VIPER in Master
Regulator Identification for T Cell Development and CD8 T Cell
Activation

To further evaluate the capability of BENEIN in reconstructing
Boolean GRN models and identifying master regulators, we ap-
plied it to single-cell RNA-seq data from T cell development[40]

and CD8 T cell activation.[41]

For the T cell development trajectory, spanning from early T
precursor (ETP) to double negative 3 (DN3) cells, a Boolean GRN
model consisting of 15 nodes was reconstructed using BENEIN.
This model effectively captured the key transition dynamics from
ETP to DN3 cells. Moreover, BENEIN identified Gata3 overex-
pression as the most efficient control target to promote T cell
development. Similarly, for the T cell activation trajectory, from
naive to effector cells, a Boolean GRN model with five nodes was
reconstructed, and BENEIN identified Eomes overexpression as
a key regulatory target for driving the activation process.

To benchmark the performance of BENEIN, we compared it
with SCENIC[42] and VIPER[43] by applying them to the same
datasets. SCENIC and VIPER identified regulons specifically ac-
tivated in DN3 and effector cells. However, a comparison of the
top-ranked genes revealed that BENEIN identified more biologi-
cally plausible targets, consistent with known regulatory factors,
whereas the other tools, relying primarily on statistical correla-
tions, often identified less relevant or unlikely targets. These re-
sults demonstrate the robustness of BENEIN in reconstructing
GRN models and its proficiency in identifying biologically more
meaningful control targets. Detailed analyses of these applica-
tions have been provided in Note S2 (Supporting Information).

3. Discussion

In this study, we presented a computational framework, BENEIN,
to reconstruct a Boolean GRN and identify master regulators
for desired differentiation on the basis of single-cell transcrip-
tomic data. BENEIN has three distinct features. First, BENEIN
utilizes information from exonic and intronic transcripts to split

the transcriptional status of each single-cell into two dynamical
states. These dynamical states can be regarded as the pre- and
post-transition states according to the underlying gene regula-
tion logic, enabling inference of more accurate regulation logic
(Note S1, Supporting Information). In contrast, existing algo-
rithms utilize pseudotime analysis with uneven time intervals be-
tween cells, leading to inaccurate regulatory logics. Second, the
minimal hyperparameter design of BENEIN facilitates tailored
model reconstruction specific to datasets, by simplifying the
complicated process of hyperparameter tuning. While existing
algorithms[40,44] require prior knowledge to reconstruct Boolean
GRN models, BENEIN automatically reconstructs Boolean GRN
models in an unbiased manner and without such prior knowl-
edge. Therefore, BENEIN effectively incorporates molecular reg-
ulation logic into the Boolean GRN model. Lastly, BENEIN is the
first attempt to systematically integrate identification of master
regulators based on complex network control and inference of an
optimal Boolean GRN model, resulting in a complete framework
to identify master regulators from single-cell transcriptomic data.
Although various methods of inferring logical regulatory network
models for GRNs from single-cell transcriptome data have been
suggested, no single framework has been suggested[12,45–47] for
systemically identifying master regulators for the desired differ-
entiation trajectory on the basis of dynamical analysis of GRNs.

BENEIN is designed to be highly modular, and each module
can be easily replaced with another up-to-date algorithm mod-
ule. For instance, although scVelo was employed for binarization
of the dynamical states and pseudotime analysis in this study, it
can be replaced with other velocity inference algorithms based
on deep learning such as DeepVelo[48] or cellDancer.[49] In addi-
tion, other control strategies like “divide and conquer” for global
stabilization (DCGS) framework[50] or the stable motif control
algorithm[51] can also be employed for global stabilization.

Previous studies[6,8,52] have demonstrated that controlling mas-
ter regulators for differentiation or trans-differentiation in cancer
cells can lead to reverted or trans-differentiated cell states. For
instance, three TFs (FOXA3, HNF1A, and HNF4A) were shown
to induce trans-differentiation of fibroblasts into hepatocytes.[53]

Cheng et al. applied these factors to hepatocarcinoma cells to re-
vert them into normal-like functional hepatocytes.[8] However,
they lacked a systemic method for identifying such master regu-
lators and also a mechanistic understanding of how regulation of
those factors can induce such reversion or trans-differentiation.
To overcome this limitation, BENEIN was developed to system-
atically investigate the intestinal differentiation process through
Boolean GRN analysis and identify the master regulators re-
quired for differentiation into enterocytes. We found that the
states of the nodes canalized by the simultaneous perturbation
of MYB, HDAC2, and FOXA2 in the Boolean GRN model were
similar to the results from the in vitro knockdown experiments
on the various colorectal cancer cell lines. We also discovered that
perturbation of these master regulators can revert colon cancer
cells into normal-like cells. The reverted colon cancer cells ex-
hibited enterocyte-specific marker gene expressions and limited
proliferation compared to original colon cancer cells in vitro and
in vivo. Furthermore, we conducted a mechanism analysis of the
GRN by applying attractor-specific network reduction, resulting
in an essential network topology associated with the desired state.
This transformed the original Boolean GRN into a tree-shaped
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backbone network structure. MYB, HDAC2, and FOXA2 were
found to be at the top of the hierarchy, implying their pivotal func-
tion in driving canalization for the desired enterocyte state.

Extending the utility of BENEIN beyond the human intestinal
differentiation context, we applied it to single-cell transcriptome
data from a developing mouse hippocampus, focusing on the dif-
ferentiation of granular cells. For inducing granular cell differ-
entiation, we identified a combination of control targets using
BENEIN: Tcf4 (overexpression), Klf9 (overexpression), and Etv4
(inhibition). Each identified control target had been previously
recognized as a key regulator in the differentiation of granular
cells. Such cross-contextual applications underscore the versatil-
ity of BENEIN not only in Boolean GRN model reconstruction
but also in its ability to identify potential control targets across
various differentiation processes.

BENEIN has several advantages for constructing Boolean
GRN models and identifying master regulators by analyzing the
model. It can robustly construct Boolean GRN models under un-
certain noise such as isoform changes due to its capability of ro-
bust Boolean function inference (Figures S19 and S20, Support-
ing Information). Moreover, BENEIN was analyzed as the most
effective tool compared to other techniques for identifying master
regulators of enterocyte differentiation, T cell development, and
CD8 T cell activation (Tables S3, S5 and Figures S5–S9, Note S2,
Supporting Information). However, there are several potential
limitations in BENEIN’s application to cancer reversion. The ac-
cumulation of mutations alters the logic of gene expression regu-
lation during tumorigenesis. Therefore, the Boolean GRN model
constructed by BENEIN, which simulates the normal differenti-
ation, is limited in its ability to predict the differentiation state of
cancer cells. In spite of this limitation, since the ability of normal
cells to differentiate can be retained in cancer cells, the cancer
reversion targets identified by BENEIN can induce cancer cells
to differentiate and to revert into their normal-like state. We also
need to note that alternative splicing events may influence the
accuracy of identifying TFs. In our case study, this effect was not
significant since the affected TFs were output nodes and thereby
the overall regulatory dynamics were not changed (Figure S8,
Note S1, Supporting Information), but the effect of alternative
splicing may in general significantly influence the inference of
GRN and investigation to minimize such effects remains as a
further study.

BENEIN can identify the master regulators of a differentiation
process through attractor analysis of the reconstructed Boolean
GRN model. However, there are potential limitations in its appli-
cation to cancer reversion. The accumulation of mutations can
alter the logic of gene expression regulation during tumorigene-
sis. Therefore, the Boolean GRN model constructed by BENEIN,
which simulates the normal differentiation, is limited in its abil-
ity to identify reversion targets and predict the resulting differen-
tiation state of cancer cells. In the example shown in this study,
we found that the primary canalizing effect induced by control-
ling the combination targets identified from normal colon cell
differentiation still holds for cancer cells in spite of some discrep-
ancies between simulation and experiments, but this cannot be
always guaranteed in other kinds of cancer. Such translation can
be effective only if the genetic alteration of cancer cells does not
influence the primary canalizing mechanism of differentiation
induction.

In this study, we applied BENEIN to intestinal differentiation
and identified master regulators that can revert colorectal cancer
cells. Since single-cell transcriptomic data of differentiation tra-
jectories of many other human tissues are becoming more avail-
able, BENEIN can be further utilized to identify master regula-
tors of pan-tissue differentiation[54,55] as well as reversion of pan-
cancer cells. BENEIN provides a systemic approach to identify
master regulators of cell differentiation and reprogramming and
opens a novel route to further investigate the role of such regula-
tors for mechanism-based therapeutic strategies.

4. Experimental Section
Preprocessing of the Single-Cell RNA Sequencing Data of Human Colon

and Rectum Samples: The single-cell transcriptome sequencing data of
the human colon and rectum were obtained from the Gene Expression
Omnibus (GEO) with the accession number GSE125970.[15] The acquired
sequencing data include two samples from the colon and two from the
rectum. Each of these samples was aligned using the Cell Ranger count
and aggr pipelines (v6.0.1) with the hg38 reference genome, resulting in
a total of 4472 cells from the colon and 3898 cells from the rectum. The
Seurat R package (v3.2) was used for quality control (QC) and integra-
tion of the count matrix for each sample. While conducting the standard
pre-processing workflow, initial QC was performed with the following cri-
teria: RNA feature count between 200 and 4500, total RNA count less than
10000, and less than 15% mitochondrial gene expression. FindIntegratio-
nAnchors and IntegrateData functions were then run using default param-
eters to integrate the four samples, resulting in a total of 7283 single-cell
expression data. Dimension reduction using UMAP was performed us-
ing 10 PC (principal component) dimensions and other parameters set
to default. Unsupervised clustering was performed using FindNeighbors
and FindClusters functions in Seurat, with parameters set to 20 PC dimen-
sions and a resolution of 0.5 to identify 24 clusters. Each cluster was then
annotated based on the expression of known marker genes such as en-
terocyte cells (ALPI, SLC26A3, TMEM37, and FABP2), goblet cells (ZG16,
CLCA1, FFAR4, TFF3, and SPINK4), Paneth cells (LYZ [Lyz1 and Lyz2 in
mouse], CA7, SPIB, CA4, and FKBP1A), enteroendocrine cells (CHGA,
CHGB, CPE, NEUROD1, and PYY), progenitor cells (SOX9, CDK6, MUC4,
FABP5, PLA2G2A, and LCN2), transient-amplifying (TA) cells (KI67, PCNA,
TOP2A, CCNA2, and MCM5), and stem cells (LGR5, RGMB, SMOC2, and
ASCL2).[15] Finally, 4252 cells corresponding to stem cells and enterocytes
were selected for Boolean GRN model construction.

Identification of Enterocytes, Benign Tumor Cells, Precancer Cells, and Can-
cer Cells among Epithelial Cell Subtypes: To investigate the tumorigen-
esis of colorectal cancer, enterocytes, benign tumor cells, precancerous
cells, and cancer cells were classified from single-cell transcriptome data
of normal colon tissues, adenoma tissues, and carcinoma tissues. For
this purpose, both epithelial pathological genetic markers and canoni-
cal colorectal epithelial markers were employed[56,57] as follows: malig-
nant cells: MMP7, LYZ, ERO1A, and BST2; pre-cancerous cells: TUBA1B,
H2AFZ, HMGB2, and HIST1H4C; benign cells: SMOC2; and enterocytes:
GUCA2A, GUCA2B, CA4, and CA2.

scVelo Analysis of the Single-Cell RNA Sequencing Data: After the pre-
processing, RNA velocity analysis was performed on the enterocyte dif-
ferentiation. The velocyto run10× pipeline (v0.17.15) was applied to the
output from the Cell Ranger count pipeline of each sample, yielding loom
files containing counts of exonic and intronic reads. These loom files were
merged, and the filter_and_normalize and moments functions of scVelo
(v0.2.2)[58] were performed to preprocess for velocity analysis. Subse-
quently, a dynamical modeling mode was employed to calculate param-
eters of significant transcriptional dynamics, including transcription rate,
splicing rate, and degradation rate, across 684 genes.

Inference of Gene–Gene Interaction Backbone Network Structure Using
Single-Cell Data: The backbone network structure used for Boolean logic
inference was determined using CMI and a moving window strategy.
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Initially, the 4252 cells involved in the enterocyte differentiation process
were divided into 20 windows, with 400 cells each. For each of these win-
dows, the following steps were undertaken to construct a network struc-
ture: First, using the 684 genes with significant velocity and known hu-
man TFs, the CMI between TF-TF or TF-TG was calculated. The CMI was
computed using the cmi function from Scribe (v0.1),[19] which, unlike mu-
tual information that only considers the expression of two genes, con-
templates the short-term changes in the target gene calculated through
velocity analysis to construct a directed network. Subsequently, a mo-
tif enrichment analysis was performed using the ctx step of pySCENIC
(v0.10.3).[20] This process employed two sections of the cisTarget DB
v9 database: hg19-500bp-upstream-7species and hg19-tss-centered-10kb-
7species.[20] Through these steps, a network structure for each window
was constructed. The link lists from the first half windows were then
merged, preserving the maximum importance for each edge to form a
backbone network structure comprising 522 genes and 1841 interactions.
Finally, a core network structure, the SCC, consisting of 17 TFs and their
93 interactions, was extracted for regulation logic inference.

Binarization of Intronic and Exonic Reads of Single-Cell Data: As a re-
sult of the scVelo analysis, each gene’s parameters for the splicing ki-
netic model, as hypothesized by scVelo, were estimated. This model vi-
sualizes splicing dynamics in a rugby ball shape on a phase plot where
exonic and intronic reads are the x and y axes, respectively. From these dy-
namics, the point where the exonic read increases/decreases faster than
the intronic read was considered to be the current dynamical state of the
cell, denoted as ON/OFF. This represents a state where the exonic read is
rapidly generated or degraded according to the quantity of the intronic
read. Furthermore, the point where the intronic read monotonically in-
creases/decreases was considered to be the cell’s next dynamical state,
also denoted as ON/OFF. This represents a state where the intronic read
is either being produced or not. This process was repeated for all genes
where scVelo successfully inferred transcriptional dynamics, determining
two binarized dynamical states for each cell.

Boolean Regulation Logic Inference Using Quine-McClusky Algorithm:
Using the network structure and binarized dynamical states, a pseudo-
truth table can be constructed for each gene for which regulation logic is
to be inferred. This pseudo-truth table is organized with the target gene
as output and the genes regulating the target gene as inputs. Each row of
the pseudo-truth table is filled with the next state of the target gene and
the current states of the regulators depending on the dynamical state of
each cell. Since the pseudo-truth table is filled based on the dynamical
state data of each cell, conflicts where output states are different for the
same input states can happen due to the noisy nature of single-cell data
and the stochasticity of cells. To resolve these conflicts, the number of dif-
ferent outputs for a specific input condition in the pseudo-truth table can
be counted, and the output with the higher count was selected to refine
the truth table. The refined truth table can determine a minimized regu-
lation logic with determined outputs for input conditions not defined in
the truth table (“don’t care” terms), using the QM algorithm. This logic
inference and can be repeated for all genes in the network to determine
the initial Boolean GRN model. However, during the logic minimization
process, some genes might be inferred to be always True or False due
to the characteristics of the truth table. In such cases, the canalization
effect—where some genes can fix the values of their downstream genes
irrespective of other remaining genes in the network—is identified and re-
flected. By removing these fixed-value genes, the final Boolean GRN model
is determined.

Attractor Analysis: An attractor refers to a steady state where a specific
initial state in the state space of a system converges to after state transi-
tions. These attractors are associated with distinct cellular phenotypes.[29]

To assess whether the reconstructed Boolean GRN model accurately cap-
tures the transition dynamics from the colonic stem cell state to the
enterocyte state and to simulate the perturbation effects of control tar-
gets, attractor simulations using a synchronous state update scheme,
starting from all initial states, were conducted. Furthermore, to investi-
gate how the perturbation of control targets can lead to a state transi-
tion from colonic stem cell state to enterocyte state, attractor simula-
tions using the synchronous scheme were performed. Here, perturba-

tion refers to the permanent fixation of a node’s state as either OFF or
ON.

Mapping the Attractors onto the UMAP Embedding Space: To align the
attractors from the Boolean GRN model with the single-cell data visual-
ized in the UMAP embedding space, following analyses were performed.
For each attractor, the nearest single-cell based on the Hamming distance
between the attractor state and the binarized expression state of cells was
identified. The most proximate cell was determined by the lowest Ham-
ming distance. Using the pseudotime assigned to each cell, the pseudo-
time was computed from the most proximate cell identified in the previous
step. This process aimed to temporally position the attractor within the dif-
ferentiation trajectory. In this way, the cell whose pseudotime most closely
matches the computed pseudotime was selected as the representative of
the attractor in the UMAP embedding space.

BNsimpleReduction: The BNsimpleReduction algorithm is a kind of a
control scheme designed to achieve global stabilization of complex bio-
logical networks. This algorithm begins with a simple state-space coor-
dinate transformation, thereby converting the original Boolean network
into an equivalent configuration that facilitates global stabilization to a
desired attractor. A network reduction is then implemented on the trans-
formed Boolean network while preserving the essential topology associ-
ated with the desired attractor ensuring that the reduced Boolean network
still possesses the information on the desired attractor. Then, the control
targets are derived by searching for a minimum set of nodes in the re-
duced Boolean network, whose permanent perturbation guarantees that
the topology is acyclic. FVS control algorithm is employed to identify ap-
propriate control targets. The proposed control scheme guarantees global
stabilization while maintaining a manageable level of computational com-
plexity and ensures the number of control targets identified by the control
scheme is close to optimality.

Average Activity Vector: The average activity vector was derived by com-
puting a weighted sum of the attractor state vectors composed of 0’s and
1’s, where each attractor state vector is multiplied by its corresponding ra-
tio of basin of attraction, and the products are then element-wisely added
together. In the case of cyclic attractors, the ratio of basin of attraction
by the number of states within each cyclic attractor was divided and this
scalar value was then multiplied by each state vector in the cyclic attractor,
and the resulting products are element-wisely added together. The average
activity vector is used to derive the similarity with the desired state. The
formula for calculating the average activity vector is as follows:

Average activity vector

= 1
n

(∑n

i=1
Attractor state vectori ⋅

Ratio of basin of attraction
Number of states

)
(1)

Similarity between the Desired Attractor State and the Average Activity Vec-
tor of the Perturbed Network: The similarity between the desired state vec-
tor and each average activity vector was computed. Among various sim-
ilarity measures, the widely used and intuitively understood cosine sim-
ilarity measure was utilized. Cosine similarity is determined by the angle
(theta) between two vectors, and a value close to 1 indicates a high degree
of similarity, while a value close to 0 indicates dissimilarity. The formula
for cosine similarity is as follows:

Similarity =
Desired attractor state vector ⋅ Average activity vector|Desired attractor state vector| ⋅ ||Average activity vector|| (2)

Synergy Score of Identified Control Targets: The synergy score measures
the number of canalized nodes when all possible combinations of nodes
are perturbed together, divided by the additive score, which is the number
of canalized nodes that each node canalizes independently. The formula
for synergy score is as follows:

Synergy score = Number of canalized nodes
Additive score

(3)
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scTenifoldKnk In Silico Knockout Analysis: The analysis of virtual knock-
out was conducted using the scTenifoldKnk tool.[31] The ribosomal and mi-
tochondrial genes were removed from the intestinal stem cell raw count
matrix, considering only those genes expressed in over 15% of the total
cell population for the analysis. In silico knockout analysis was performed
using default parameters. For the genes affected by virtual knockout per-
turbations, functional annotation, and enrichment analysis were carried
out using the Enrichr software package.[59]

GSEA Analysis of Three Types of Colon Cancer Cell Line: Cell lines were
compared with knockdown of all three control targets against wild-type
cell lines, ranking all genes based on the magnitude of differential gene
expression. Subsequently, these ranked genes were cross-referenced with
enterocyte,[60] Wnt,[61] and Myc[61] signatures using Gene Set Enrichment
Analysis (GSEA). GSEA was performed utilizing the “fgsea” (fast GSEA) R-
package,[62] according to its default parameters.

Cell Culture and Reagents: Human colon cancer cells, HT-29, CACO-2,
and HCT-116, obtained from the Korean Cell Line Bank and normal human
colon epithelial cell line, NCM-460, a kind gift from Seyun Kim (Korea Ad-
vanced Institute of Science and Technology) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (WelGENE Inc.) containing 10% fe-
tal bovine serum (FBS, WelGENE Inc.) and antibiotics (100 units mL−1

of penicillin, 100 μg mL−1 streptomycin and 0.25 μg mL−1 of Fungizone)
(Life Technologies Corp.) at 37 °C in a humidified atmosphere containing
5% CO2.

Virus Production and Establishment of Stable Cell Lines: Lentiviral par-
ticles were generated by transfecting HEK293T cells with lentivirus me-
diated short hairpin RNA plasmid (Sigma-Aldrich), packaging and enve-
lope plasmid mixture (pLP1, pLP2, pLP/VSVG, Invitrogen) using Lipofec-
tamine 2000 (Invitrogen) according to the manufacturer’s instructions.
Moreover, cells overexpressing MYB, HDAC2, and FOXA2 using lentivi-
ral particles were established. Lentiviral particles were generated by trans-
fecting HEK293T cells with MYB, HDAC2, and FOXA2 overexpression
vector (Vector Builder), psPAX2 packaging (a gift from Didier Trono, Ad-
dgene # 12260), and pMD2.G envelope (a gift from Didier Trono, Addgene
# 12259) using Lipofectamine 2000 (Invitrogen). The medium was har-
vested after 48 h of transfection and filtered through a 0.22-μm cellulose
acetate filter (Sartorius). Filtered lentiviral medium and complete DMEM
10% supplemented with 8 μg mL−1 polybrene were infected to NCM-460,
HT-29, CACO-2, and HCT-116 cell lines. shRNA sequences used are given
in Table S9 (Supporting Information), and overexpression vector map is
given in Figure S18A (Supporting Information).

Total RNA Extraction and qRT-PCR: RNA was extracted using an RNA-
spin kit (INTRON), and cDNA was synthesized using a DiaStar RT kit (Sol-
gent) according to the manufacturer’s instructions. After reverse transcrip-
tion, qRT-PCR was performed using QuantStudio5 (Applied Biosystems)
with SYBR Master Mix (GeNet Bio). qRT-PCR primer sequences used are
given in Table S8 (Supporting Information).

Alignment and Pre-Processing of Bulk RNA-Seq Data of Colon cancer Cell
Lines: Sequencing libraries were prepared using TruSeq RNA Sample
Preparation kit v2 (Illumina Inc., USA). After pooled libraries were dena-
tured, sequencing of each library was carried out using the 100 bp paired-
end mode of the TruSeq Rapid PE Cluster Kit and TruSeq Rapid SBS Kit
with HiSeq 2500 (Illumina Inc., USA). To quantify total RNA of colorec-
tal cancer cell lines, sequencing libraries were prepared using TruSeq RNA
Sample Preparation kit v2. After pooled libraries were denatured, sequenc-
ing of each library was carried out using the 100 bp paired-end mode of the
TruSeq Rapid PE Cluster Kit and TruSeq Rapid SBS Kit with HiSeq2500 (Il-
lumina Inc., USA). The prepared RNA-seq data were trimmed using Trim-
momatic version 0.39. The trimmed reads were aligned to the mm10 ref-
erence genome using STAR version 2.7.7a with the default parameter. The
mapped reads were indexed and sorted by samtools version 1.7. Then
HTSeq version 0.12.4 was used to quantify read coverage per gene. For
all human RNA seq data, the alignment pipeline (Trimmomatic—STAR—
HTSeq) with hg38 reference genome was also performed. Next, batch-
effect corrections were performed by ComBat-seq.

Western Blot Analysis: Cells were washed in PBS and lysed in lysis
buffer [20 mm HEPES pH 7.2, 0.5% Triton X-100, 150 mm NaCl, 10%
Glycerol, protease/phosphatase inhibitor cocktail (Thermo Fisher)]. The

lysates were centrifuged at 13 000 rpm for 15 min at 4 °C and the super-
natants were separated by SDS-PAGE followed by immunoblotting. For
immunoblotting, anti-HDAC2, anti-FOXA2, anti-c-MYB, anti-KRT20, anti-
TCF1/7, anti-c-MYC, anti-VDR, anti-𝛽-catenin, and anti-GAPDH purchased
from Cell Signaling Technology Inc., and anti-KRT19 purchased from Santa
Cruz Biotechnology Inc. were used. For quantifying intensity of protein
bands, ImageJ software was used (http://imagej.nih.gov/ij) and normal-
ized by GAPDH.

Cell Growth Assay: To analyze the effect of control targets on cell
growth, transfected cells were seeded in 96-well plate (4 × 103 cells per
well). Cell images were captured every 3 h interval with IncuCyte ZOOM
(Sartorius). Cell growth was analyzed based on confluence of adherent liv-
ing cell using IncuCyte software.

Mouse Injection Condition: Athymic NCr-nu/nu [7 weeks per female]
(mouse) (Koatech) were implanted subcutaneously with 2 × 106 HCT-
116 cells, 1.5 × 106 HT-29 cells, and 3 × 106 CACO-2 cells (in 100 μL
PBS). Tumor growth was measured using digital caliper and tumor volume
was calculated as 0.5× long length × short length2 (mm3). All animal pro-
cedures were IACUC approved (KA2019-24) and performed in Laboratory
Animal Research Center at Korea Advanced Institute of Science and Tech-
nology. Athymic Balb/c nude mice were purchased from Koatech (Korea).
Mice were housed in the ventilated cage (max 5 mice per cage) supplied
with food and water in a 12-h light/12-h dark cycle at 22 °C and 41% hu-
midity.

Statistical Analysis: Wilcoxon rank-sum test or t-test was used to evalu-
ate differences between groups for continuous variables. Overall Survival
(OS) was defined as the time interval between dates of curative surgery
and death from any cause. Disease Free Survival (DFS) was defined as the
time interval between dates of curative surgery and tumor recurrence or
death. OS and DFS rates were estimated using the Kaplan–Meier method
and were compared based on survival distributions between two groups
using the log-rank test. The Cox proportional hazards model was used for
univariate and multivariate analysis. Clinicopathologic factors, which were
statistically significant in univariate analysis, were included as covariables
in multivariate analysis. Hazard ratios (HR) and 95% confidence intervals
(CI) were assessed for each factor. All tests were two-sided, and a p-value
of less than 0.05 was considered statistically significant.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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