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Attractor Landscape Analysis Reveals a Reversion Switch in
the Transition of Colorectal Tumorigenesis

Dongkwan Shin, Jeong-Ryeol Gong, Seoyoon D. Jeong, Youngwon Cho, Hwang-Phill Kim,
Tae-You Kim, and Kwang-Hyun Cho*

A cell fate change such as tumorigenesis incurs critical transition. It remains a
longstanding challenge whether the underlying mechanism can be unraveled
and a molecular switch that can reverse such transition is found. Here a
systems framework, REVERT, is presented with which can reconstruct the
core molecular regulatory network model and a reversion switch based on
single-cell transcriptome data over the transition process is identified. The
usefulness of REVERT is demonstrated by applying it to single-cell
transcriptome of patient-derived matched organoids of colon cancer and
normal colon. REVERT is a generic framework that can be applied to
investigate various cell fate transition phenomena.

1. Introduction

Cell fate changes often involve abrupt transition, called “critical
transition,”[1] at key points, superimposed on a background of
more gradual changes. In particular, it has been well known that
tumorigenesis incurs such critical transition.[1b,2] So, questions
arise as to what the core molecular regulatory network underly-
ing the critical transition is and whether we can reverse it by con-
trolling a master regulator of the core network. Among the cell
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fate changes, cancer reversion refers to
reprogramming of cancer cells into nor-
mal (or normal-like) cells which exhibit
normal phenotypes and also lose malig-
nant characteristics. Since Askanazy’s his-
toric observation of spontaneous reversion
of ovarian teratomas within the embry-
onic microenvironment,[3] a number of
intriguing studies have been followed to
the present reporting the possibility of
reverting cancer cell states to phenotypi-
cally healthy cell states under various ex-
perimental settings.[4] However, these ap-
proaches often relied on trial-and-error ex-
periments or comparative analyses mostly
that focus on static network properties,

limiting their ability to capture dynamic transitions. Recent stud-
ies aimed to overcome such limitations by developing mecha-
nistic molecular regulatory network models for predicting mas-
ter regulators of cell-fate reprogramming in breast[5] and lung
cancers.[6] However, these approaches are limited by their re-
liance on literature-based models, which are often incomplete
and biased toward well-studied genes like oncogenes or tumor
suppressors.

Recently, the rapid growth of single-cell transcriptomic data
provides unprecedented opportunities to unravel cellular het-
erogeneity within tissues and investigate dynamic cellular pro-
cesses such as cell state transitions during differentiation, de-
velopment, or epithelial-mesenchymal transition.[7] In particu-
lar, pseudotime analysis allows us to explore transition states
or intermediate cell states between distinct cellular states, fa-
cilitating the identification of transition genes, a set of genes
that switch their expressions during the transition.[8] This anal-
ysis also aids in the inference of static gene regulatory net-
works for each cell state or a specific pseudotime trajectory
and also the reconstruction of mechanistic models for molecu-
lar regulation networks based on ordinary differentiation equa-
tions (Inference Snapshot,[9] SCODE,[10] SCOUP[11]) or Boolean
functions (Pseudotime-network-inference,[12] BTR,[13] SCNS,[14]

IQCELL[15]), which can elucidate the dynamic changes of gene
expression along the pseudotime trajectory (see Review[16]). Of
note, these dynamic network models allow us not only to inves-
tigate the fundamental mechanisms governing cell fate transi-
tions during development or disease progression but also to pre-
dict dynamic responses to gene perturbations based on the static
single-cell transcriptome data. Recent advances in gene regula-
tory network modeling have offered insights into controlling cell
fates, but modeling tumorigenesis remains challenging due to
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genetic alterations that dynamically reshape networks through-
out the tumorigenic process, hindering the creation of a unified
model. Moreover, critical transitions often observed in many bio-
logical state transitions such as tumorigenesis add another chal-
lenge owing to the nature of rapid change in phenotypes occur-
ring at a tipping point.[1a,b,2] This critical transition is actually a
key feature of tumorigenesis and thereby understanding the un-
derlying complex dynamics at the tipping point is crucial for ex-
ploring cancer reversion.[4e] Instead of modeling the entire tu-
morigenic trajectory, focusing on the tipping point captures key
state transitions.

Recent studies showed that cell fate changes typically occur be-
tween discrete steady states, known as attractor states, and het-
erogeneity in gene expression is observed as cells transition be-
tween these states.[7,17] The collection of heterogeneous transcrip-
tional profiles observed during a cell fate change represents a
‘transition state’ where a cell exhibits a mixed identity between
two or more states. A number of attempts have been made to
identify such transition states and relevant marker genes in the
process of cell fate changes such as epithelial-mesenchymal tran-
sition (EMT), differentiation, and development. They are mostly
based on the heterogeneity or plasticity of transition states, and
include those methods like Index of criticality (Ic),[1a] QuanTC,[1e]

scRCMF,[8c] MuTrans,[8d] and BioTIP.[8b] In tumorigenesis, nor-
mal cells in a stable state (normal cell attractor) within the at-
tractor landscape become destabilized due to accumulating ge-
netic alterations, transitioning into a bistable state between nor-
mal and tumor cell attractors (Figure 1a). This tumor transition
state is unstable and reversible, allowing cells to stochastically
switch between the two attractors. Despite sharing the same gene
regulatory network structure due to a common mutational back-
ground, cells in this state exhibit diverse gene expression profiles
along the transition trajectory. This heterogeneity is crucial for
developing a mechanistic model of the core regulatory network
driving tumorigenesis, as it reflects the dynamic changes occur-
ring within a single network framework.

Here, we present REVERT (REVERse Transition), a novel sys-
tems framework to identify reversion switches in the transition
of tumorigenesis through attractor landscape analysis. REVERT
uses single-cell transcriptomic data of cancer patients as an in-
put and employs a Boolean network modeling approach to de-
velop dynamic gene regulatory network models over the tran-
sition path from normal to cancer cell attractors within the tu-
mor transition state, where cell states are represented by the net-
work states dynamically changing upon a single backbone of the
gene regulatory network (GRN). The Boolean model of GRN of-
fers a comprehensive view of the relationship among network
states, termed an attractor landscape. By introducing a malig-
nancy score quantifying the attractor landscape of the transition
state, REVERT can estimate the malignant potency of the cellu-
lar state based on the concept of Waddington’s landscape of can-
cer and identify an optimal therapeutic intervention target which
minimizes the score. By applying it to single-cell transcriptome
of colorectal cancer patient-derived tumor and adjacent normal
organoids, REVERT identifies combinations of transcription fac-
tor targets for cancer reversion through systematic in silico per-
turbation analysis. We further validate the predicted restoration
effect of normal phenotypes through experiments with colorec-
tal cancer organoids by controlling the reversion switch, USP7,

a common target gene among the identified transcriptional fac-
tors. Together, these results highlight the usefulness of REVERT
in identifying optimal therapeutic targets and provide valuable in-
sights into potential cancer reversion strategies. REVERT can be
widely applied to identify optimal reprogramming targets for de-
sired cell fate changes in differentiation, development, or cancer
cell reprogramming or reversion, while offering mechanistic in-
sights into dynamic gene regulation underlying various cell state
transitions.

2. Results

2.1. Overview of REVERT

REVERT aims to reconstruct the dynamic network model of GRN
that can represent cellular dynamics in the tumor transition state
and to identify potential intervention targets for cancer reversion
through in silico perturbation simulations with attractor land-
scape analysis. Dynamic network modeling is crucial for under-
standing and predicting the behavior of a system in response to
perturbations under untested circumstances, enabling the iden-
tification of an optimal reversion switch that can drive the cel-
lular system toward a desired normal cell state upon the attrac-
tor landscape. To ensure the inclusion of a sufficient number of
cells in the transition state and also in the normal and cancer
cell states representing the endpoints of tumorigenesis, REVERT
uses paired single-cell transcriptomic data from tumor and ad-
jacent normal tissues as input. This approach is based on the
ergodic hypothesis in statistical physics,[18] which means that a
snapshot of cell population at a single sampling time point can
actually represent all possible intermediate cellular states along
the normal-to-tumor cell state transition trajectory (Figure 1a).

REVERT consists of four main steps (Figure 1b): i) Identifica-
tion of a transition state based on copy number variants (CNVs)
of tumor and matched normal tissues. For this purpose, we
employ an algorithm, such as CopyKAT,[19] to infer single-cell
CNV profiles from scRNA-seq data, as it still remains challeng-
ing to perform sequencing of both the genome and the tran-
scriptome at the same time from a same single cell. We clus-
ter the inferred CNV patterns to deduce the evolutionary trajec-
tory of the tumor, which is typically described by a phylogenetic
tree. This allows for the identification of distinct subclones, in-
cluding a normal-like, tumor-like, and transition states charac-
terized by the coexistence of both normal and tumor cells. ii)
Reconstruction of a dynamic network model to capture the dy-
namic behavior of transition cells. There may be various stochas-
tic transitions occurring between steady states corresponding to
normal and tumor phenotypes within a transition state.[4e,7] By
employing pseudotime analysis on the transition state, we ob-
tain the temporal progression of differentially expressed genes
(DEGs) along the trajectory from a normal cell state to a tumor
cell state. By integrating the temporal information of DEGs with
prior knowledge about regulatory interactions between genes,
we construct Boolean logic functions that describe the regula-
tory relationships between transcriptional factors (TFs) within
a strongly connected component (SCC), a subgraph composed
of feedback structures where any two nodes are mutually reach-
able. iii) Introduction of a cancer score (CS) that quantifies an
attractor landscape, which comprises the normal or tumor cell
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Figure 1. Conceptual framework of tumor transition state and overview of REVERT. a) Conceptual framework of tumor transition state. The ergodic
hypothesis in statistical physics suggests that a snapshot of a cell population taken from a cancer patient would capture the entire process of tumorige-
nesis. This includes the normal state with a stable normal cell attractor in an epigenetic landscape, the intermediate transition state in which the normal
cell attractor destabilizes while a tumor cell attractor emerges and stabilizes, and the eventual tumor state where the tumor cell attractor dominates. b)
Workflow of REVERT.
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attractor states arising from the Boolean network dynamics, by
measuring the relative dominance and stability of normal and
tumor attractors in the state transition graph. iv) Identification
of target TFs for cancer reversion by investigating cancer score
changes in response to in silico knockout or overexpression of
TFs. The optimal combination of TFs is filtered based on the re-
sulting cancer score, with a lower CS indicating a closer prox-
imity to the normal cell state. Perturbing candidate TFs in the
SCC affects all target genes within the GRN through the propa-
gation of the signal flow from TFs to their respective target genes.
We further refine key target genes among the common target
genes of the candidate TFs by analyzing perturbation databases
such as LINCS[20] (http://www.lincsproject.org/) and DepMap[21]

(https://depmap.org/portal/).

2.2. Identifying the Tumor Transition State

To develop REVERT, we produced single-cell RNA sequencing
(scRNA-seq) data from patient-derived organoid samples taken
from both cancer and adjacent normal tissues of a colorectal can-
cer (CRC) patient (Figure 2a, top). To order cells along with the
accumulation of genetic alterations, we utilized a copy number
variation (CNV) inference algorithm, CopyKAT,[19] to predict ane-
uploidy at single-cell level from scRNA-seq data (Figure 2a, mid-
dle). From this, we can distinguish between cancerous and nor-
mal cells, and also reveal an intermediate clone comprising a
mixture of various cellular states including diploid cells of cancer
origin, aneuploid cells of normal origin, etc. The single-cell copy
numbers were then used to reconstruct a phylogenetic tree which
describes the sub-clonal relationships among cells and summa-
rizes their chronicle of tumorigenesis (Figure 2b). We found that
some clades are characterized by heterogeneous cell populations
which include normal and cancer-originated cells or diploid and
aneuploid cells, in contrast to the homogeneous cell populations
found at both the beginning and end of the tree. Cells in these
heterogenous clades are in an intermediate state between normal
and cancer cell states (Figure 2a, bottom), which we define as a
tumor transition state (Figure 2b,c, and Figure S1, Supporting In-
formation, see the Experimental Section). This heterogeneity in
the transition state is relevant to the instability at a tipping point
and can be characterized by the critical transition index[1a] which
is defined as the ratio of the average of gene-gene correlation to
the average of cell–cell correlation, and the single-cell transition
entropy (scEntropy)[22] which measures cell plasticity. Both quan-
tities were found to be significantly higher at the transition state
than that at the normal-like state or cancer-like state, indicating
that cells in the transition state are under an unstable condition
at the tipping point and are prone to transitioning toward specific
stable states (Figure 2d). Furthermore, we found that cells in the
transition state exhibit intermediate gene set scoring of cancer-
related signatures, such as cell cycle, senescence, and oncogene-
sis, as well as the signatures of normal colon and rectum tissue
(Figure 2e). In summary, cells in the transition state share sim-
ilar genetic backgrounds (Figure 2b) but display heterogeneous
transcriptional profiles, reflecting diverse phenotypic behaviors.
In the following section, we present a dynamic network model
for the transition state, capturing the dynamics of gene expres-

sion changes through a representative gene regulatory network
common to cells within this state.

2.3. Reconstructing a Mechanistic GRN of the Transition State

In the transition state, cells characterized by normal features can
coexist with those exhibiting cancer features. These cells may un-
dergo diverse trajectories characterized by stochastic transitions
between the normal and cancer cell states. REVERT selects a spe-
cific trajectory, such as the path from the normal to cancer cell
states to construct a dynamic network model based on Boolean
logical regulatory rules using the time course data along with the
path (Figure 3a,b). To identify the optimal Boolean rules for a
gene that fit well the selected time course data, we adopted a
score function that quantifies the extent to which the predicted
output of a Boolean function agrees with the observed pseudo-
time output, which was implemented in Pseudotime-network-
inference[12] using the Z3 solver. The construction of simulat-
able logical GRNs was achieved by integrating binarized gene ex-
pression data and the structural information of an initial GRN
(Figure 3a).

Along the pseudotime trajectory, we curated genes of inter-
est, including both differentially expressed genes (DEGs) and
transition genes that are expected to be critical in tumorigenesis
(Figure S2, Supporting Information). The direct binarization of
scRNA-seq data frequently results in significant temporal fluc-
tuations, attributed to the inherent stochastic nature of single-
cell data. These fluctuations may not comprehensively capture
the overall characteristics of the entire trajectory. Therefore, a
smoothing process preceding the binarization procedure was un-
dertaken using a moving window approach, yielding a moving-
averaged expression profile across pseudotime (Figure S3, Sup-
porting Information). The smoothed gene expression data were
then used to refine the initial backbone of the GRN by filter-
ing highly correlated genes and assigning causal relationships
and regulatory signs to their interactions. Considering the piv-
otal roles of feedback loops in shaping the dynamic behaviors of
the entire network, we proceeded to extract strongly connected
components (SCCs), wherein every node is reachable from every
other node (Figure 3c). The resulting subnetwork was used for
inferring Boolean regulation logical rules for each node based on
the binarized expression data (Figure S4, Supporting Informa-
tion) (see the Experimental Section for details). To determine the
best rules for each gene regulation, we defined the score func-
tion for input-output pairs from the pseudotime order (Figure S3,
Supporting Information). For genes where multiple rules with
the highest scores were derived, all the rules were combined to-
gether using the logical OR operation (Tables S1 and S2, Support-
ing Information).

Once the Boolean regulation rules of the network were es-
tablished, Boolean simulations can predict the configuration of
attractors, the states to which the Boolean network eventually
converges depending on initial states, and their corresponding
basins, the collection of all network states converging to the same
attractor, which forms a state transition diagram showing the at-
tractor landscape (Figure 3d). Attractor analysis revealed that the
four largest basins (Attractor 1 to 4) exhibit more similar pat-
terns of gene expression of the corresponding attractors than the
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Figure 2. Identification of tumor transition state. a) Principal component analysis of scRNA-seq data of cancer and adjacent normal tissues in tran-
scriptomic (left column) or CNV (right column) spaces. Cells are colored by their originated tissues (top), their aneuploidy (middle), and their cell state
(bottom). b) Phylogenetic tree reconstructed from single-cell CNV profiles. It was inferred by the neighbor joining method and colored by cell origin,
aneuploidy, and predicted state. c) Cell composition of normal and cancer tissues (left) and the transition state (right) in terms of aneuploidy. d) Critical
transition index and single-cell entropy (scEntropy) for normal-like, transition, and cancer-like states. e) Gene set scoring of cancer-related signatures
(top) and normal colorectal tissue signatures (bottom).
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Figure 3. Reconstruction of dynamic network model for the transition state of colorectal cancer. a) Schematic overview of reconstructing a dynamic
GRN model for the tumor transition state. Binarized single-cell gene expression data and prior knowledge of the GRN structure are integrated to infer
Boolean logic rules. b) Pseudotime trajectory of the tumor transition state inferred by Monocle. A specific trajectory was selected as the path from
normal to cancer origin cells. c) Network structure of strongly connected components (SCCs) extracted from the GRN. Red links indicate inhibitory
regulations, whereas black links represent activating regulations. d) State transition diagram and the molecular profiles of the attractors in the inferred
Boolean network model. Attractors were sorted according to their basin size. We considered only 1000 random initial states and obtained a total of nine
attractors, including eight point attractors and one cyclic attractor. The cyclic attractor is not shown in the figure as its corresponding basin size is the
smallest. e. Attractors for each single-cell state as an initial state. Cells in the earliest or latest pseudotime converge to Attractor 5 (normal attractor) and
Attractor 1 (cancer attractor), respectively.
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remaining basins, and cover most of the state space. To ascertain
the specific cellular phenotypes corresponding to each attractor,
we analyzed the attractor state of individual single cells, using
their binarized gene expression values as initial states (Figure S5,
Supporting Information). The results show that cancer cells in
the latter part of pseudotime converge to the Attractor 1, whereas
normal cells at the earliest pseudotime remain at the Attrac-
tor 5 (Figure 3e), indicating that Attractors 1 and 5 correspond
to the cancer cell and normal cell attractors, respectively. The
cancer attractor delineates the specific molecular profiles that
underlie cancer-related phenotypes. In particular, MYC, a well-
known oncogene associated with tumor initiation and progres-
sion in cancer,[23] is upregulated in the cancer attractor. Moreover,
genes elevated at the cancer attractor, such as CDX2 (Caudal Type
Homeobox 2),[24] YY1 (Yin Yang 1),[25] SREBF1 (Sterol Regula-
tory Element-Binding Transcription Factor 1),[26] and SMARCA4
(SWI/SNF Related, Matrix Associated, Actin Dependent Regula-
tor of Chromatin, Subfamily A, Member 4),[27] were implicated in
promoting CRC progression by regulating processes such as cell
proliferation, invasion, and metastasis, although their roles may
vary depending on the context of CRC. Conversely, the normal
attractor exhibits the gene expression patterns opposite to those
of the cancer attractor (Figure 3d).

Together, these results show that REVERT can construct a dy-
namic network model for the tumor transition state based on
scRNA-seq data and effectively simulate Boolean regulation func-
tions to elucidate the attractor landscape governing the transition
between normal and cancer cell states. We may expect that two
major attractors corresponding to normal and cancer attractors
would manifest in the transition state (see Figure 1a), unlike our
case where the basin size of the cancer attractor markedly exceeds
that of normal attractor (Figure 3d). This may be attributed to our
initial selection process where we specifically chose a trajectory
from normal cells to cancer cells. Consequently, the inference of
Boolean regulation functions based on such a trajectory is inher-
ently biased to the selected dynamics which eventually leads to
cancer cell states. Indeed, there may exist many alternative tra-
jectories, including a trajectory from cancer cells to normal cells,
owing to the stochastic nature of the transition state. The ultimate
composition of the attractor landscape depends on the chosen ini-
tial trajectory. We note that the presence of the normal attractor,
even though its basin size is considerably smaller than that of the
cancer attractor, may open up the possibility for cancer reversion.

2.4. Quantifying the Attractor Landscape to Identify Optimal
Therapeutic Targets for Cancer Reversion

The attractor landscape of a Boolean network serves as a dis-
crete representation of potential energy landscape of networks
states, offering comprehensive insights into the relationship
between binarized network states, namely separated attractors
and their corresponding basins upon a state transition diagram
(Figure 3d). Nevertheless, the discrete nature of this landscape
imposes limitations in assessing the robustness of attractors to
external perturbations and discerning their relative stability (cor-
responding to depths of attractors) in the landscape, which are
crucial for understanding system resilience and systematically
exploring potential drug targets for cancer reversion. To estimate

the relative depths of attractors and ultimately quantify the at-
tractor landscape of a Boolean network in the context of malig-
nancy, we postulated the presence of a virtual axis extending from
the normal attractor state to the cancer attractor state in the state
space (Figure 4a). The gene expression vector of any given state
can be projected onto this axis, enabling the calculation of the
Euclidean distance from the normal attractor along the normal-
cancer (n-c) axis, termed the effective distance, denoted as deff (see
the Experimental Section). An effective distance near 0 or 1 indi-
cates that the given state is close to a normal or cancer attractor,
respectively.

While the effective distance serves as an indicator of the rela-
tive positioning of attractors within the landscape, perturbation
analysis offers a method to evaluate their depth by observing the
uncertainty of perturbed steady states in response to random per-
turbations, which we denote as “attractor entropy” (see the Ex-
perimental Section and Figure 4a). A high attractor entropy of a
state indicates a high probability of converging to other attrac-
tors, suggesting that this state may belong to a shallow energy
well in the attractor landscape. We define the averaged attractor
entropy over all states within a basin of attraction as the depth of
the corresponding potential energy well, representing the vertical
position of the attractor.

The continuous attractor landscape can be synthetically con-
structed by utilizing the effective distance, the averaged attractor
entropy, and the basin size of each attractor. These metrics re-
spectively determine the position along the n-c axis, the vertical
depth, and the width of the corresponding potential energy wells.
Such a virtual landscape holds the capability to provide insights
into the malignancy of a given cell state. For instance, a landscape
wherein the cancer attractor represents a significantly deeper and
wider valley compared to the normal attractor implies a highly
malignant cell state. To quantify such malignancy of a given at-
tractor landscape, we introduced a cancer score. This score can be
conceptualized as the volume of water filling the valleys, scaled by
the proximity of individual valleys to the cancer attractor. Specifi-
cally, this is calculated as the product of the area of each attractor
valley and the effective distance of each attractor along the n-c
axis (see the Experimental Section and Figure 4a).

We used the aforementioned metrics to track cellular trajecto-
ries over time by mapping single cells in the transition state onto
the landscape (Figure 4b). Cells at earlier pseudotime are closer
to the normal attractor, whereas those at later time are positioned
near the cancer attractor. A reduction of entropy was observed
among cells at later pseudotime, indicative of deeper energy wells
within the landscape, suggesting that cells at later pseudotime oc-
cupy more stable states. We further examined the attractors for
random initial states, along with their associated metrics to elu-
cidate entire potential energy landscape of the transition state.
Our results revealed that the five attractors are projected onto
the n-c axis, with the cancer attractor at deff = 1 forming a sig-
nificantly larger and deeper valley compared to the normal at-
tractor (Figure 4c,d). Intriguingly, the normal attractor, despite
having a small basin, exhibits a relatively deep valley, suggest-
ing that the normal attractor forms a distinct valley characterized
by high robustness to external perturbations. The coexistence of
distinct attractors, including both normal and cancer attractors,
represents a hallmark feature of the transition state. Our analysis
also revealed that the cancer score for the transition state is high,
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Figure 4. Quantification of the attractor landscape to identify optimal therapeutic targets for cancer reversion. a) Workflow for quantifying the attractor
landscape to obtain the cancer score. The discrete attractor landscape is transformed into continuous landscape in n-c axis by introducing effective
distance (projection onto the n-c axis), attractor entropy (depth of valleys), and basin size (width of valleys) for each attractor. The cancer score quantifies
the malignancy of the landscape by calculating the volume of valleys, scaled by their proximity to the cancer attractor. b) Mapping of single cells from
the transition state onto the attractor landscape, showing effective distance (left) and attractor entropy (center) along pseudotime. Scattering cells onto
an effective distance-attractor entropy plane enables a rough visualization of the landscape (right). c) Basin size (left) and attractor entropy (right) of
attractors for 10000 random initial states. The effective distances of five attractors are represented on the y-axis, and the effective distances of initial
states are on the x-axis. The histogram on the y-axis indicates the basin size of the five attractors. d) 2D representation of the attractor landscape for
the transition state. The relative positions, depths and widths of the valleys were determined by the effective distance, attractor entropy, and basin size
obtained in (c). N and C represent the normal cell and cancer cell attractors, respectively. e,f) In silico perturbation analysis of gene expression, showing
changes in basin size (e) and cancer score (f) in response to gene knockout or overexpression. The cancer score of the control without any perturbation
in colored in blue, whereas the five most effective cases are colored in orange. “0” and “1” indicate knockout and overexpression of the corresponding
gene, respectively. g) Changes in the attractor landscape for the knockout of YY1 (top) and the double knockout of YY1 and MYC (bottom). h) Cancer
scores for double knockout among the top five effective perturbations in (f). i) Summary of the most effective double-node perturbations for various
hyperparameter sets.

attributed to the excessively large valley of the cancer attractor
(Figure 4d).

The significance of attractor landscape and its quantification
becomes evident when exploring potential therapeutic drug tar-
gets. By systematically perturbing the GRN in silico, such as al-

tering connections, adjusting node states, or introducing exter-
nal inputs, we can effectively control the dynamics of cellular
systems. Such in silico perturbation enables us to reshape the
landscape, thereby facilitating control over the system toward a
desired cell state like a normal state as shown in this case study.

Adv. Sci. 2024, 2412503 2412503 (8 of 18) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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To identify the optimal drug targets for cancer reversion, we con-
ducted in silico perturbation analysis by perturbing gene expres-
sion, either by fixing it to 0 (knockdown) or 1 (overexpression).
REVERT can simulate changes in the attractor landscape in re-
sponse to gene perturbations, including basin size, effective dis-
tance, and attractor entropy of attractors (Figure 4e and Figure S6,
Supporting Information). It then provides a list of effective target
genes based on the resulting cancer scores (Figure 4f). Among
the identified target genes, the knockdown of YY1 emerged as the
most effective target gene, leading to the creation of a new attrac-
tor closer to the normal attractor with a significantly large basin
size (Figure 4e). Moreover, the basin size and attractor entropy of
the normal attractor increased and decreased, respectively, com-
pared to those of the cancer attractor (Figure S6, Supporting In-
formation, and Figure 4g). These results suggest that inhibiting
YY1 might be effective as an anti-cancer strategy. To identify the
drug targets for cancer reversion beyond anti-cancer therapy, we
conducted a double-node perturbation analysis (Figure S7, Sup-
porting Information). The double knockdown of YY1 and MYC
resulted in a significant decrease in the cancer score to 0.056,
corresponding to the disappearance of the cancer attractor and
the emergence of dominant normal and near-normal attractors
in the landscape (Figure 4g,h and Figure S8, Supporting Infor-
mation). The double knockdown of YY1 and CDX2 was the sec-
ond most effective strategy, whereas targeting MYC and CDX2
resulted in a less favorable outcome compared to targeting MYC
alone (Figure S9, Supporting Information). This indicates that
the combination of YY1 and MYC might be the most synergistic
in promoting cancer reversion.

REVERT relies on multiple hyper-parameters, including the
number of DEGs along pseudotime, the width of smoothing win-
dows, and the time step size for input-output pairs in calculating
the scoring function. These hyper-parameters can slightly influ-
ence the resulting network and, consequently, impact the identi-
fication of optimal drug target candidates for cancer reversion. To
ensure the robustness of our results, we constrained these hyper-
parameters. Specifically, we limited the network size to 10∼30
nodes to avoid highly complex networks with an excessive num-
ber of attractors. In addition, we set a threshold for the initial
cancer score of the transition state to be exceeding 0.5 to exclude
trivial cases for cancer reversion. We then collected the most ef-
fective target genes showing cancer scores less than 0.15 after
perturbations among the cases for various hyper-parameter sets.
Of note, the double knockdown of YY1 and MYC consistently
showed low cancer scores after perturbations in the majority of
cases (Figure 4i and Table S3, Supporting Information), confirm-
ing that the combination of YY1 and MYC may exhibit synergistic
effects, rendering them promising target genes for cancer rever-
sion.

2.5. Identification of the Optimal Target Gene for Cancer
Reversion

MYC is a well-known oncogene in CRC, with its upregulation be-
ing linked to tumorigenesis progression.[23a] YY1 is also overex-
pressed in multiple cancer types, including CRC, where its over-
expression is correlated with poor clinical outcomes.[28] There-
fore, therapeutic strategies that target these two key transcription

factors could potentially enhance treatment outcomes for CRC
patients. Nonetheless, there are significant limitations in using
them as therapeutic targets. YY1 regulates the expression of nu-
merous genes, increasing the risk of unintended consequences
on normal cellular processes, including off-target effects[29] and
cytokine release syndrome.[30] MYC remains an undruggable
therapeutic target due to the absence of well-defined active sites
on its protein structure where small molecules can bind to.[31]

Furthermore, its complete inhibition could affect normal home-
ostasis, as MYC plays a crucial role in various physiological pro-
cesses associated with tissue generation.[32] To overcome these
limitations, we further investigated to identify alternative target
genes regulated by both transcription factors. To identify such
common target genes, we used the initially constructed back-
bone of the GRN obtained from the SCENIC algorithm. This net-
work includes subsets of target genes that are either positively
or negatively regulated by both MYC and YY1 (Figure 5a). We
first analyzed the cancer dependency of positively regulated com-
mon target genes using CRISPR screen datasets from the Can-
cer Dependency Map (DepMap). Most of these target genes ex-
hibit gene effect scores less than 0 across various colon cancer
cell lines, suggesting that their inhibition could potentially sup-
press the proliferation of the corresponding cell lines (Figure 5b).
Notably, several genes, including USP7 and TFRC, have scores
lower than -1, indicating their critical role in these cell lines.
Further analysis was conducted by assessing the changes in en-
richment scores for normal colon signatures in colon cancer cell
lines following genetic perturbations, using data from the LINCS
L1000 database.[20] This revealed that the inhibition of several
genes, such as APBB2, BDH1, and USP7, substantially enhances
the normal colon signature within cancer cell lines (Figure 5c). By
combining the scores for cancer dependency and normal signa-
ture enrichment, we identified USP7 as the optimal target gene
for cancer reversion (Figure 5d).

2.6. Experimental Validation of the Predicted Cancer Reversion
Target

USP7 (ubiquitin-specific protease 7) plays important roles in can-
cer progression by deubiquitinating and stabilizing various onco-
genic proteins like MDM2, FOXP3, and PTEN, thereby emerged
as a promising therapeutic target.[33] In colon cancers harbor-
ing APC mutations, USP7 acts also as a tumor-specific Wnt ac-
tivator by promoting the deubiquitination and stabilization of 𝛽-
catenin.[34] Deletion of USP7 in colon cancers inhibits Wnt acti-
vation by restoring 𝛽-catenin ubiquitination, facilitating differen-
tiation and suppressing tumor growth. Furthermore, there is ev-
idence that USP7 inhibition can selectively target acute myeloid
leukemia (AML) cells while having minimal effects on normal
cells.[35] This selectivity is likely due to the specific roles of USP7
in regulating pathways and proteins that are aberrantly activated
in cancer cells but not in normal cells. These findings make USP7
an attractive therapeutic target for cancer reversion in colon can-
cer cells.

To investigate the efficacy of USP7 as a potential target for
cancer reversion in colon cancer organoids, we conducted USP7
knockdown experiments using the inhibitor P22077 in colon
cancer organoids previously used in the process of network
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Figure 5. Experimental validation of the optimal target gene for cancer reversion. a) Common target genes positively (gray lines) or negatively (red
lines) regulated by both MYC and YY1 transcription factors. b) Cancer dependency scores of positively regulated common target genes derived from
CRISPR knockout screen datasets (DepMap) across various colon cancer cell lines. Negative scores indicate cell growth inhibition upon gene knockout.
Bars in the x-axis represent given cell lines. c) Enrichment analysis of gene expression changes following genetic perturbation of colon cancer cell lines
(HT29, LOVO, SW480, SW620, and HCT116) using the LINCS L1000 database. The normal colon gene signature was obtained from the Human Protein
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reconstruction. We subsequently evaluated the inhibition of can-
cer cell proliferation and the induction of the transcriptomic sig-
nature associated with normal colon cells (Figure 5e). From these
experiments, we aimed to determine whether the inhibition of
USP7 can lead to the reversion of colorectal cancer organoids.
Of note, USP7 knockdown in colon cancer organoids signifi-
cantly reduced the growth rate of the organoids (Figure 5f,g).
Furthermore, gene set enrichment analysis (GSEA) showed that
USP7 knockdown is significantly associated with the inhibition
of tumor formation by downregulating the genes related to MYC
and MAPK3 pathways (Figure 5h). These alterations in the tran-
scriptome landscape were accompanied by the downregulation
of genes associated with stem cell pathways (Figure 5i). These re-
sults suggest that USP7 exhibits anti-cancer properties in colon
cancer, which is consistent with our DepMap analysis result
(Figure 5b) and previous experimental findings.[33] Next, Gene
Ontology (GO) analysis of positive DEGs upon USP7 knockdown
revealed its significant association with the pathways implicated
in normal colon epithelial cells and the genes related to the nega-
tive regulation of cell cycle and cell proliferation (Figure 5j), con-
sistent with the previous L1000 analysis results (Figure 5c). To-
gether, these findings indicate that knockdown of USP7 in colon
cancer organoids can facilitate the reversion of them to more nor-
mal colon states.

The experimental validation of USP7 as a potential therapeutic
target for cancer reversion, identified through REVERT, provides
compelling evidence for the efficacy of dynamic network model-
ing of tumor transition states. The observed reversion of colon
cancer organoids to a more normal state upon USP7 inhibition
supports the predictions made by our mechanistic Boolean net-
work models and attractor landscape analysis. These findings un-
derscore the usefulness of our integrative framework, REVERT,
which combines single-cell transcriptomic data, dynamic net-
work modeling, and in silico perturbation simulations, to identify
and validate optimal therapeutic targets for cancer reversion.

3. Discussion

It has been an important challenge to develop a systems frame-
work for controlling cell states based on omics data in the fields
of diverse biological studies, drug discovery, stem cell engineer-
ing, and regenerative medicine. The key innovation of this study
lies in the identification of potential targets for cancer reversion
through the development of a dynamic network model focusing
on the transition state in tumorigenesis. As described in Intro-
duction, unlike developmental or differentiation processes, can-
cer progression involves structural changes in the GRN due to

accumulation of mutations, making it difficult to capture the en-
tire cancer progression dynamics through a single GRN frame-
work. To overcome such difficulty, we solely focused on the tran-
sition state of cancer progression and constructed a GRN based
on the single cells across the transition state. Both normal and tu-
mor cells in this state may still share similar genetic alterations
since they are located in the same or adjacent clades on the phy-
logenetic tree based on CNV characteristics. This similarity en-
ables us to construct a single unified network model. By analyz-
ing such a unified network model on the transition state, we were
able to represent the attractors of both normal and tumor cells
within a single attractor landscape, facilitating the identification
of target genes that could potentially drive cancer reversion. Here,
we presented REVERT, a computational framework for cancer
reversion, which integrates dynamic network modeling and at-
tractor landscape analysis using single cell transcriptomic data
of paired organoid models derived from a colorectal cancer pa-
tient. REVERT can identify a key target gene as a reversion switch
which may induce a transition from cancer cell states to normal
cell states by controlling the attractor landscape of tumor transi-
tion states. Therefore, REVERT provides an opportunity for de-
veloping targeted therapeutic strategies for cancer reversion and
advancing our understanding for cellular reprogramming pro-
cesses.

CNVs, as permanent genomic alterations, are inherently irre-
versible. Our focus is, however, on functional and phenotypic re-
versibility rather than direct reversal of the CNVs themselves. In
this study, the transition state is defined based on CNV-driven
network alterations. While CNVs establish the structural frame-
work of the gene regulatory network, the state of the system
within this framework can still be modulated. By targeting key
regulatory genes within the dynamic network model that shape
the attractor landscape, we propose strategies to reshape the at-
tractor landscape of the transition state to effectively mimic that
of the normal state. This approach enables the system to move
toward a phenotype resembling the normal state, even under the
constraints imposed by the CNVs. In essence, our model explores
the potential for phenotypic plasticity within the constraints of ir-
reversible genomic changes, offering insights into a new poten-
tial therapeutic strategy in cancer treatment.

MYC, one of the cancer reversion targets identified in our
study, is a well-established key regulator in cell fate determina-
tion. Our finding regarding MYC is partially attributable to the
fact that the gene regulatory network we constructed is informed
by prior knowledge of TF-TG regulatory networks. Nevertheless,
this finding underscores that REVERT is reliable and capable
of accurately identifying critical components of gene regulatory

Atlas. d) Identification of USP7 as the optimal target gene for cancer reversion, based on combined scores for cancer dependency and normal signature
enrichment. e) Schematic representation of the experimental methodology using the USP7 inhibitor P22077 to validate USP7 as a potential target for
cancer reversion in colon cancer organoids. f) Quantification of the colon cancer organoids growth changes upon USP7 knockdown, depicting the relative
growth rates at day 0, 5, and 10 post-knockdown for varying concentrations of the USP7 inhibitor (0 × 10−6, 5 × 10−6, 10 × 10−6, and 15 × 10−6 m). The
p-value was calculated using repeated-measures (RM) analysis of variance (ANOVA): p < 0.001. g) Representative images depicting the morphological
changes and reduced growth of colon cancer organoids upon USP7 knockdown using the inhibitor P22077, compared to untreated control organoids. h)
Gene set enrichment analysis (GSEA) results illustrating the significant downregulation of gene signatures associated with tumor formation upon USP7
knockdown in colon cancer organoids. i) Dot plot representation depicting the GSVA scores for stem cell pathways (x-axis) versus oncogenic pathways
(y-axis) in USP7 knockdown organoids (orange dots) and control organoids (red dots). j) (Left) Volcano plot illustrating the differentially expressed
genes between control organoids and USP7 knockdown organoids, with genes exhibiting significant upregulation upon USP7 inhibition highlighted in
red. (Right) Bar plot depicting the results of GO analysis for the 195 positively differentially expressed genes.
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networks. Although MYC was predicted as a cancer reversion tar-
get, its single inhibition does not significantly alter the size or
width of the cancer attractor and, consequently, does not substan-
tially reduce the cancer score (Figure S9b, middle, Supporting
Information). Interestingly, while MYC inhibition causes only a
minimal increase in the width of the normal attractor, it unex-
pectedly results in a substantial increase in the depth of the nor-
mal attractor. These changes in the attractor landscape suggest
that while MYC contributes to the stabilization of the normal at-
tractor, thereby opening a possibility for cancer reversion, it has
limited effectiveness in achieving cancer reversion on its own.
This emphasizes the need for additional co-targets, such as YY1,
to facilitate more effective cancer reversion.

There have been accumulated evidences showing that stable
cellular states in Waddington’s epigenetic landscape can be rep-
resented by the underlying core molecular regulatory circuits.[36]

These circuits often have the form of double-negative feedback
loops, referred to as bistable toggle switches, which play a crucial
role in driving cell state transitions.[36a,b,37] Cross-repression be-
tween transcription factors (TFs) in such circuits is instrumental
in maintaining the stability of cellular states and facilitating tran-
sitions between them. Our analysis revealed MYC and YY1 as
key elements of double-negative feedback loops which intercon-
nect core regulatory circuits associated with normal and cancer
attractors (Figure 3c), indicating that these TFs can potentially act
as master regulators for cancer reversion. REVERT offers a com-
prehensive approach for systematically identifying core regula-
tory networks and their master regulator across various cell-fate
changes. By combining the principles of bistable toggle switches
and core regulatory circuits, REVERT provides a useful tool for
elucidating the mechanism underlying cell state transitions and
identifying key targets for cellular reprogramming not only in
cancer but also across various cell fate changes.

The mechanistic modeling of REVERT can be characterized
by several key features that distinguish it from existing meth-
ods. First, REVERT employs Boolean network modeling to cap-
ture the essential dynamic behaviors of cells on the basis of prior
knowledge of the molecular regulatory network structure. The
landscape control approach, grounded in continuous dynamical
systems, models GRNs using differential equations and provides
detailed insights into the energy landscape of a system.[38] This
methodology excels in quantifying changes in energy landscapes,
such as basin depths, barrier heights, and transition probabili-
ties, offering a rich representation of the stability and dynamical
behavior of cell states. It is particularly advantageous for under-
standing complex attractor basins and quantifying the likelihood
of transitions between cell states under different perturbations.
Furthermore, it facilitates the identification of control strategies
by pinpointing key regulators that drive transitions, offering di-
rect insights into potential therapeutic targets. While represent-
ing gene expression levels by binarized activity states may result
in the loss of details on the cellular behavior, Boolean network
modeling still have several advantages: it does not require ki-
netic parameters to be estimated, facilitates interpretability, pro-
vides a simple dynamic approach to model GRNs, and enables
straightforward simulation analysis for network perturbations.
Recently, single-cell transcriptomic data were employed to con-
struct Boolean network models since Boolean models have the
advantage of being robust to data uncertainty including stochas-

tic variations inherent in single-cell data. However, existing ap-
proaches either rely on simple correlation methods for network
inference without considering prior knowledge (e.g., BTR[13] and
Pseudotime-network-inference[12]), or cannot handle direct feed-
back loop circuits between two genes that are actually ubiquitous
in gene interaction networks (e.g., IQCELL[15]). REVERT over-
comes these limitations by integrating prior knowledge and sin-
gle cell transcriptome data, resulting in improved accuracy and
robustness in developing Boolean network models.

Second, the attractor landscape analysis of REVERT enables
us to identify target genes that can induce the transition from
a cancer cell state to a desired normal cell state. This approach
also holds significant potential for not only elucidating the mech-
anisms underlying cancer initiation but also investigating other
various biological phenomena on cell fate changes such as in de-
velopmental processes or cellular differentiation. For these appli-
cations, the initial cellular state and the desired target state must
be clearly defined and characterized in the high-dimensional cel-
lular state space based on transcriptome. In addition, to enhance
robustness to the choice of hyperparameters in the attractor land-
scape analysis, ensemble models can be considered for identifi-
cation and prioritization of control targets.

Third, the quantification of the attractor landscape in REVERT
enables systematic in silico gene perturbations. The attractor
landscape of a Boolean network model contains multidimen-
sional information and therefore it is difficult to directly com-
pare the relative stability of attractors. To resolve this, REVERT
projects attractors onto the n-c axis and employs the concept of
attractor entropy to quantify the malignancy of a given attractor
landscape in terms of a cancer score. In this way, REVERT en-
ables the identification of optimal targets through single or dou-
ble gene perturbation simulations. We note, however, that the
projection process onto the n-c axis inevitably leads to informa-
tion loss. In addition, for tumorigenesis that bifurcates into two
distinct subpopulations, REVERT focuses only on the primary
tumorigenic trajectory. Hence, there is a need to develop meth-
ods that can allow higher dimensional analysis, enabling a more
comprehensive understanding of the attractor landscape.

In this study, to simplify the scope of the transition state as
much as possible, we defined the tumor transition state using
normal and tumor cells that exist along a single lineage. There-
fore, the statement that cells in the tumor transition state share
the same mutational background reflects the specific context of
our analysis, where the single-cell transcriptomic data were de-
rived from tumor and matched normal organoid models, repre-
senting a closely related population of cells within the tumor. This
allowed a focused exploration of the dynamic changes occurring
in cells likely originating from a common mutational lineage.
In broader biological contexts, it is possible for transition cell
states to arise from different genetic backgrounds. For instance,
in heterogeneous tumor microenvironments, subclones with dis-
tinct mutational profiles could exhibit similar transitional behav-
iors due to shared regulatory pathways or convergent phenotypic
pressures. While our current analysis focused on a homogeneous
mutational context to simplify the network inference, future work
should explore how diverse genetic backgrounds might influence
the transition state.

The single-cell data used for network construction and pseu-
dotime inference were derived from a tumor, and therefore, the
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“normal” and “cancer” cell states in our analysis represent tumor-
associated normal-like and cancer-like states rather than true
healthy or cancerous tissue. The pseudotime trajectory was com-
putationally inferred, with its directionality determined based
on transcriptional similarities and differences. To approximate a
transition from normal-like to cancer-like states, we defined the
starting point of the pseudotime as cells with transcriptional pro-
files most similar to normal-like cells and the endpoint as cells
aligning with cancer-like profiles. This interpretation relies on
the ergodic hypothesis (as illustrated in Figure 1), which posits
that a snapshot of a cell population at a single sampling time
point can represent the full spectrum of intermediate cellular
states along the normal-to-tumor transition trajectory. This ap-
proach has shown a potential in modeling lineage commitment
in the hematopoietic system.[39] Similarly, the diversity of cellular
states observed within the tumor at a given time point can reflect
different stages of progression from normal-like to cancer-like
states.

There is a growing interest in pseudotime analysis of single-
cell transcriptomic data to investigate dynamic gene expression
programs over cell fate changes such as differentiation, trans-
differentiation, and reprogramming. However, in the context of
tumorigenesis which involves the accumulation of genetic alter-
ations, it is crucial to incorporate genomic information for ac-
curate inference of pseudotime trajectories and identification of
tumor transition states. In this study, we incorporated CNVs in-
ferred from scRNA-seq data to identify tumor transition states.
However, it is needed to consider more accurate genetic alter-
ations instead of relying on the inferred data. One possible ap-
proach is to adopt multiomics single cell sequencing data which
can enable to jointly analyze both genomic and transcriptomic
information from the same cell, although it is still challenging
to simultaneously measure the very small quantity of DNA and
RNA present in a single cell. Alternatively, single-cell long-read
sequencing data[40] can be utilized to detect single nucleotide vari-
ants (SNVs) in exonic regions, providing a promising way to iden-
tify tumor transition states with higher resolution. By integrating
genomic and transcriptomic data through these emerging single-
cell multiomics techniques, we can seek for a more comprehen-
sive understanding of the molecular mechanisms underlying tu-
mor transition states and thereby developing ultimate targeted
therapies for cancer reversion.

4. Experimental Section
Establishment of Patient-Derived Paired Normal Colon and Colon Cancer

Organoids: Tissues from human colons were obtained from the Seoul
National University Hospital (Seoul, Korea). After removal, each tumor
and its matched normal tissue was used to prepare for cultures. This study
was approved by Seoul National University Hospital (approval number:
1710-102-896). Tissues were chopped and minced using a gentleMACS
Dissociator (Miltenyi Biotec, Bergisch Gladbach, Germany). Dissociated
samples were passed through a 70 μm cell strainer to remove large tissue
fragments. Isolated tumor cells were embedded in Matrigel and seeded
in 24-well plates, followed by the addition of organoid media. Organoid
medium was refreshed thrice weekly. The organoid medium consisted
of 50% L-WRN conditioned media,[41] 50 ng mL−1 recombinant human
EGF (PeproTech, USA), B27 supplement (Invitrogen, USA), 1.25 × 10−6

m N-acetyl cysteine (Sigma-Aldrich, USA), nicotinamide (Sigma-Aldrich,
USA), 3 × 10−6 m SB202190 (Sigma-Aldrich, USA), 500 × 10−9 m A83-01

(Tocris, UK), 10 × 10−9 m prostaglandin E2 (Sigma-Aldrich, USA), 100 μg
mL−1 Primocin (InvivoGen, USA), and 1% antibiotics (10 000 units mL−1

penicillin, and 10 000 μg mL−1 streptomycin; WELGENE, Korea) in ad-
vanced DMEM/F12 (Gibco, USA). L-WRN, a secretion cell line of Wnt3A,
R-spondin1, and Noggin, was sourced from ATCC (USA).

Establishing and Preprocessing Single-Cell RNA Sequencing Libraries from
Dissociated Organoids using 10x Genomics: Organoids were dissociated
into single cells for RNA sequencing analysis. Following rinsing with
phosphate-buffered saline (PBS), organoids were enzymatically dissoci-
ated using TrypLE Express (Gibco) and incubated at 37 °C for 15 min.
During incubation, the mixture was pipetted every 5 minutes to promote
complete dissociation. The enzymatic reaction was halted by adding Dul-
becco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS). The resultant cell suspension was filtered through a
40 μm cell strainer to achieve a uniform single-cell suspension. Cell viabil-
ity and density were assessed using Trypan Blue exclusion with a hemo-
cytometer to ensure optimal cell concentration for sequencing. For library
preparation, the single-cell RNA sequencing library was constructed using
the Chromium Single Cell Instrument (10x Genomics), following the man-
ufacturer’s protocol. The process involved loading cells into a Chromium
Chip B where cells, master mix, and partitioning oil were combined to gen-
erate single-cell gel beads in emulsion (GEMs). Post GEM-RT reaction,
GEMs were broken, and the barcoded cDNA was isolated, cleaned using
DynaBeads MyOne Silane Beads (Invitrogen), and amplified by PCR. The
quality and quantity of the amplified cDNA libraries were evaluated using
an Agilent 4200 Tapestation system (Agilent Technologies). The libraries
were sequenced on an Illumina Nova-seq 6000 system, employing paired-
end sequencing as recommended by the manufacturer. This method en-
sures the generation of high-quality data for transcriptomic analysis. In
addition, apoptotic cells that express more than 15% mitochondrial tran-
scripts were excluded, as these are considered low-quality cells. Following
this filtering step, 18049 cells were retained for further analysis. Each cell
underwent log normalization by scaling to a constant total read count per
cell (100 000), followed by log transformation. For visualization, principal
component analysis (PCA) was initially conducted using 2000 highly vari-
able genes for dimensionality reduction. Subsequently, PCA dimensions
were utilized to project into 2D space. All these analyses were conducted
using the Seurat v4.0.2 package in R (v4.2.0).

Identifying SCNA from Single-Cell Transcriptome Data with CopyKAT: To
identify somatic copy number alterations (SCNAs) from single-cell tran-
scriptome data, CopyKAT (version 1.0.3)[19] with default settings was used.
This analysis included both aneuploid and diploid cells from external val-
idation biopsies, focusing on paired organoid single-cell transcriptome
data.

Reconstruction of a Phylogenetic Tree from Inferred SCNAs in Single-Cell
Transcriptome Data: Our goal was to construct a phylogenetic tree based
on SCNAs inferred from single-cell transcriptome data. Using the bionj
function in the ape package,[42] a neighbor-joining tree was created to es-
timate distances between cells. The resulting phylogenetic tree was visu-
alized with the ggtree package, emphasizing cells in the transition state,
where cancer and normal cells coexist during the transitional stage of tu-
morigenesis.

Gene Set Scoring: The cancer-related gene set including cell cycle,
senescence, and oncogenesis is the used genes in previously defined
meta-programs of malignant cells.[43] Normal colon gene signatures were
obtained from various databases: the Human Protein Atlas (HPA),[44]

FANTOM,[45] and the Genotype-Tissue Expression project (GTEx).[46] The
gene sets obtained from these databases included genes that exhibit at
least five-fold higher level of expression in the colon compared to other
tissues. Specifically, this resulted in 196 genes from HPA, 181 genes from
FANTOM, and 480 genes from GTEx. Gene set scores were computed us-
ing the AddModuleScore function in Seurat.

Defining Transition State by Identifying Heterogeneous Cell Populations in
the Phylogenetic Tree: The transition state in tumorigenesis is defined as
an intermediate state where cells exhibit mixed characteristics of normal
and cancer cell states. To identify this state, a phylogenetic tree based on
inferred CNVs was constructed, capturing the evolutionary relationships
among cells. The tree was divided into 30 smaller clades to analyze the
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degree of heterogeneity within each clade (Figure S1a). Shannon entropy
(H) was calculated for each clade to quantify the mixture of normal and
cancer cell populations

H = −
(

Nn

Nn + Nc
⋅ log2

Nn

Nn + Nc
+

Nc

Nn + Nc
⋅ log2

Nc

Nn + Nc

)
(1)

where Nn and Nc is the number of normal and cancer cells in the clade,
respectively.

Among the intermediate clades in the tree, the transition state was iden-
tified as the region where entropy showed a marked increase, indicating
a significant blend of normal and tumorigenic characteristics (Figure S1b,
Supporting Information).

Critical Transition Index: Gene-gene correlation reflects the co-
expression relationships between genes, while cell–cell correlation mea-
sures the similarity of gene expression profiles across individual cells, re-
flecting the extent to which cells within a population share similar tran-
scriptional states. Critical transitions are often characterized by a loss of
stability in the current attractor state, accompanied by increased variability
and reduced coordination among system components. These shifts can
lead to increased heterogeneity in cell–cell correlation while simultane-
ously altering gene–gene interactions. The ratio of these correlations re-
flects the interplay between these two dimensions, which can serve as a
potential marker for the critical transition.

Data Preparation and Pseudotime Inference of Transition Cells: First rel-
evant genes were filtered in the transition state, such as highly variable
genes (HVGs) and colon marker genes, and then conducted pseudotime
analysis with those genes. While REVERT uses monocle2[47] for pseudo-
time analysis, alternative tools like Slingshot[48] can also be employed. In
this study, monocle2 for pseudotime analysis was utilized to infer cellular
trajectories. monocle2 allows for the generation of various trajectories de-
pending on hyperparameter settings, resulting in different representations
of cell state transitions. For instance, possible trajectories include normal
origin cells progressing toward tumor origin cells, tumor origin cells tran-
sitioning back to normal origin cells, or normal origin cells bifurcating into
two distinct tumor cell populations. Among these possibilities, the trajec-
tory that progresses from normal origin cells to tumor origin cells was
specifically selected. This selection was guided by its biological relevance,
as it represents the transition from normal to tumor states, which is the
main focus of our study. In addition, trajectories that align with known
biological processes were carefully evaluated and selected to ensure the
analysis remains meaningful and interpretable. Along this trajectory, genes
were identified, including DEGs or switching genes by GeneSwitches,[8a]

that are expected to be critical along the trajectory. Our analysis only con-
sidered those cases where the final number of identified genes exceeds
1000.

Generation of Binarized Gene Expression Data: To determine Boolean
regulation rules for each gene, binarized time course data of gene expres-
sion as well as structural information of the gene regulatory network was
needed. Binarizing gene expression values can lead to substantial tempo-
ral fluctuations due to the inherent stochastic characteristics of single cell
data. Such fluctuations may not allow us to effectively capture the overall
characteristics of the entire trajectory. Therefore, a smoothing process pre-
ceding the binarization procedure was performed using a moving window,
resulting in a moving-averaged expression profile across pseudotime. The
window width was set to less than 10% of the total cell count.

Determining the Structure of a GRN: REVERT exploits an initial back-
bone of the GRN as prior knowledge, from which a subnetwork is extracted
according to the gene expression profiles associated with the trajectory.
It began by performing pseudotime analysis to define a trajectory from
normal cells to tumor cells. Using SCENIC (Single-Cell Regulatory Net-
work Inference and Clustering),[49] a prior knowledge-based GRN from
the single-cell transcriptomic data along this trajectory was constructed.
SCENIC identifies transcription factor (TF)-target gene (TG) relationships
based on known TF binding motifs and cis-regulatory elements, provid-
ing an initial regulon structure. SCENIC employs RcisTarget, a tool that
uses motif discovery and enrichment analysis to identify transcription fac-
tor (TF)-target gene (TG) regulatory relationships based on prior knowl-

edge. Specifically, RcisTarget integrates databases of TF binding motifs
and cis-regulatory elements, mapping them to genes with enriched mo-
tifs in their regulatory regions. This approach enables the identification
of putative TF-TG interactions grounded in established biological knowl-
edge. GRNs typically contain a large number of genes and links, which
may render dynamic simulations computationally impractical. Moreover,
some genes and links identified in the initial network may not contribute
meaningfully to the dynamics observed in single-cell transcriptomic data.
To address this, the network was pruned in several steps to focus on bi-
ologically relevant interactions. First, meaningful genes such as differen-
tially expressed genes (DEGs) and transition genes- were identified–those
with significant changes along the pseudotime trajectory—by analyzing
the time course data derived from the trajectory. Smoothing the single-
cell data was essential at this stage to mitigate stochastic noise inherent
to single-cell transcriptomics, enabling us to focus on global changes over
time. Using smoothed data, Spearman correlation coefficients were cal-
culated between genes to infer the directionality and signs of regulatory
interactions. Positive correlations were assigned as activations, while neg-
ative correlations were assigned as inhibitions. A correlation cutoff (set
to 0.7 in this study) was applied to remove weakly correlated interactions.
The pruned network was then refined by removing terminal nodes—genes
with an outdegree of zero—as these do not influence the overall dynamics
of the network. This step significantly reduced the complexity of the net-
work, focusing on regulatory components that shape system-wide behav-
ior. Next, strongly connected components (SCCs) within the network were
connected, where every node is reachable from every other node within
the SCC. SCCs play a critical role in shaping network dynamics as they
represent feedback loops and core regulatory modules. The resulting sub-
network, composed of SCCs, was used to define the GRN structure for
downstream dynamic modeling. Finally, Boolean regulation rules were de-
termined for each regulatory interaction using binarized time-course data.
If a node lacks any activation input, self-activation was added to maintain
a potential regulatory edge. This finalized the GRN structure, integrating
prior knowledge with trajectory-specific data to capture the essential dy-
namics of the transition from normal to tumor states.

Determining Boolean Regulation Rules of Genes: To determine Boolean
regulation rules for genes, REVERT integrates the binarized expression
data of genes with the structural information of the SCCs within the
GRN. This approach captures the dynamic regulatory relationships be-
tween genes as cells transition along the pseudotime trajectory. The first
step involves generating input–output pairs {(It, Ot + k)} from the pseu-
dotime order, which represent the state of regulatory inputs at time t (It)
and the corresponding output states after a step size k (Ot + k). To avoid
any overlap between the input and output windows, the step size k was set
larger than the width of the smoothing window applied to the pseudotime
data (Figure S3a, Supporting Information). This ensures that input-output
pairs accurately reflect the causal relationships between gene expression
states over time, mitigating any influence of stochastic noise in the single-
cell transcriptomic data. For each gene, a Boolean function f is identified
such that it can represent the observed input–output relationships. To de-
termine the best Boolean function for each gene, the score function for
input–output pairs from the pseudotime order was implemented, as used
in Pseudotime-network-inference.[12] The score function S(f) evaluates the
fitness of a Boolean function f to the input–output pairs

S (f ) =
m∑

t=1

St (f ) (2)

where m is the total number of input–output pairs, and St(f) is defined as

St (f ) =
{

1
0

if f (It) = Ot+k
otherwise. (3)

This scoring mechanism ensures that the Boolean function accurately
captures the regulatory relationship between input states and the result-
ing output states. For genes with multiple input–output pairs, the func-
tion f with the highest score S(f) is selected as the most representative
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regulation. In cases where multiple Boolean functions achieve the same
highest score, all such functions are retained. These are combined using
a logical OR operation, reflecting the possibility of alternative regulatory
mechanisms governing the gene expression dynamics. This redundancy
preserves the complexity of regulatory interactions while maintaining the
accuracy of the inferred GRN.

Attractor Analysis: For a given Boolean regulation rules, dynamical
state transition paths from random initial states will eventually converge
to a few specific states, that is, the attractors of the Boolean network. The
set of network states that converge to the same attractor is called the basin
of attraction. Attractor analysis was conducted for each of the individually
predicted networks using different combinations of hyper-parameters in-
cluding the smoothing window width and the step size in input–output
pairs. For an ensemble of hyperparameters, the results revealed diverse
cases where multiple attractors with small basin sizes coexist, or a single
major attractor with a large basin size dominates. In the context of a tran-
sition state, the former case appears to be suitable, but the latter might be
more appropriate if a trajectory from normal to cancer within the transi-
tion state is chosen during the pseudotime analysis. Boolean network sim-
ulations were performed using the BoolNet R-package and synchronous
update strategy. For a comprehensive understanding of the attractor distri-
bution, REVERT provides quantified summaries encompassing the basin
size of major attractor states, distance to normal and cancer attractors,
the size of the resulting network, and the average agreement level, across
a variety of hyper-parameters. The average binarized gene expression vec-
tors of cells within 20% from both ends of the pseudotime order were
considered as normal/cancer cell attractor states, respectively.

Computing the Distance to a Normal Attractor from each Attractor along
the Normal-Cancer Axis: Performing attractor analysis of a Boolean net-
work reveals the attractor landscape, a discrete representation of the po-
tential energy landscape of attractors and their basins. This landscape al-
lows for the visualization of attractors and their basins by elucidating rela-
tionships between individual states in the state transition graph. To quan-
tify attractor states in the context of malignancy, a virtual axis in the state
space was presumed, connecting the normal attractor state to the cancer
attractor state. The gene expression vector of an arbitrary state was then
projected onto the axis to quantify its proximity to the normal attractor.
This effective distance of a state vector, v, in the state space was mea-
sured as the Euclidean distance between the normal attractor, vN, and the
projection coordinates along the axis, vC − vN, as follows

d =
(v − vN) ⋅ (vC − vN)

||vC − vN
||2 (4)

When d approaches 0 or 1, it indicates that the state is close to either the
normal or cancer attractor, respectively. The malignancy and basin size of
each attractor state were determined by calculating the effective distance
of the attractor and normalized counts from 1000 random initial states
converging to the corresponding attractor.

Defining Cancer Score by Quantifying the Attractor Landscape of a Boolean
Network Model: To evaluate the degree of malignancy of a cell state, the
attractor landscape was needed to be quantified so that not only the ma-
lignancy of attractor was compared but also the stability between attrac-
tors, i.e., their relative depth in the landscape. Perturbation analysis was
used to compare the stability of different attractors by observing the uncer-
tainty of steady states after the random perturbation on a state. A metric
termed “attractor entropy” was defined to represent the uncertainty of the
attractor state against the perturbation. A perturbed state within a basin of
attraction can either return to the original attractor or hop into another at-
tractor. The probability distribution of newly converged states following the
perturbation was evaluated. The average entropy of attractor i is expressed

as Si =
∑

j Sj
i

Nb
, where j denotes a state within the basin of attractor i and Nb

is the basin size. The entropy of state j, Sj
i is given by Sj

i = −
∑

k Pk log2Pk
where Pk represents the probability that the perturbed state converges to
attractor k. The attractor entropy is maximal for a uniform distribution,
specifically, Smax = −

∑
k

1
N

log2
1
N
= log2N, where N is the total number

of attractors. Perturbation analysis was performed using the perturbNet-
work function in the BoolNet R-package. A single gene was randomly cho-
sen and the output values of the corresponding Boolean functions were
randomly permuted. The average entropy of each attractor corresponds
to its depth in the attractor landscape, while the basin size represents the
width of the attractor.

In the attractor landscape of a given cell state, the comprehensive eval-
uation of attractor valley depth, width, and their proximity to the cancer
attractor collectively characterize the malignancy of the cell state. Conse-
quently, a cancer score was introduced, which is conceptually expressed
as the product of the amount of water filling the valleys in the landscape
and how close these valleys are to the cancer attractor. This is calculated
by summing the effective distance of each attractor along the n-c axis mul-
tiplied by the area of each attractor valley across all attractors as follows

Cancer score =
∑

k

(
1 −

Sk

Smax

)
⋅

Bk

BN + Bx + BC
⋅ dk (5)

To generate the surface plot of the landscape, the persp function was
used from the R graphic library. The contours of the valleys were modeled

to fit to the function f (x) ∼ −Se
− x2

B2 .
Predicting the Cancer Reversion Targets through Systematic In Silico Gene

Perturbations: The construction of an executable logical GRN enables
simulations of gene perturbations and predictions of their impact on the
overall network, thereby facilitating the identification of potential thera-
peutic targets. The network was initially perturbed by manipulating gene
expression, fixing it either to 0 (knockdown) or 1 (overexpression). The
attractor landscape changes due to the perturbation, consequently result-
ing in alterations to the cancer score. The optimal target gene would be
the one that induces the most substantial reduction in the cancer score.
Our analysis was limited to instances where the initial cancer score of the
transition state exceeds 0.5, and considered as successful cancer rever-
sion when the final cancer score is 0.1 or less. In complicated networks,
however, single-gene perturbation alone might be insufficient to achieve
a final cancer score below 0.1. Double-gene perturbation was then exam-
ined using combinations of the top 5 genes identified as effective in single-
node perturbations. The fixGenes function in the BoolNet library was used
for node fixation. Finally, the most effective combination of two candidate
genes was mapped onto the regulon network by SCENIC, a subnetwork
composed of TFs and their target genes, derived from scRNA-seq of the
transition state. Common target genes of the two TFs were then extracted
as the ultimate candidate genes for cancer reversion.

USP7 Inhibitor Treatment to the Patient-Derived Colon Cancer Organoid:
The cultured organoids were treated with 5, 10, 15, 20 μM of the USP7
inhibitor P22077 (#S7133, Selleck Chemicals, USA) or vehicle (DMSO;
Sigma-Aldrich, USA) for 10 days. Medium containing P22077 was replaced
daily.

Organoid Size Measurement using OrganoID: Images of organoids
within Matrigel droplets were captured at three to four locations within the
gel and at two to three different height layers using a microscope equipped
with a 4x objective on days 0, 5, and 10 of culture. The images were ana-
lyzed using OrganoID,[50] applying a hyperparameter set with a threshold
of 0.2, edge sigma of 0.4, minimum edge of 0.01, maximum edge of 0.1,
and a minimum area of 50 px. The areas measured in pixels were converted
to square micrometers (μm2) using a coefficient estimated by ImageJ.

RNA Isolation from the Organoids: Organoids embedded in Matrigel
were harvested by centrifugation for 5 minutes at 500 x g at 4°C. Matrigel
was discarded, and the organoids were washed twice with DPBS. RNA was
extracted using an RNA-spin kit (INTRON).

Bulk RNA-seq Library Construction of the Organoids: Total RNA was ex-
tracted from the collected cell or tissue samples using the RNA extraction
kit (Intron, Korea) following the manufacturer’s instructions. RNA integrity
was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies),
ensuring all samples had an RNA Integrity Number (RIN) greater than 7.
RNA concentration was measured using the Qubit RNA Assay Kit (Thermo
Fisher Scientific). RNA sequencing libraries were constructed using the
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TruSeq RNA Library Prep Kit v2 according to the manufacturer’s protocol.
Briefly, mRNA was isolated from total RNA using poly-T oligo-attached
magnetic beads and fragmented into small pieces under elevated tem-
perature. The first strand cDNA was synthesized using random hexamer
primers and reverse transcriptase, followed by synthesizing the second
strand cDNA using DNA Polymerase I and RNase H. The cDNA fragments
underwent end repair, A-tailing, and ligation to adapters. The products
were then purified and enriched with PCR amplification to create the fi-
nal cDNA library. The quality and quantity of the libraries were assessed
using the Agilent 2100 Bioanalyzer and the Qubit DNA Assay Kit. Libraries
were then sequenced on the Illumina Hi-Seq 2500 to generate paired-end
reads of 101 base pairs.

Alignment and Preprocessing of Bulk RNA-seq Data of Colon Cancer
Organoids: Sequencing libraries were prepared using TruSeq RNA Sam-
ple Preparation kit v2 (Illumina Inc., USA). After pooled libraries were de-
natured, each library was sequenced using the 100 bp paired-end mode of
the TruSeq Rapid PE Cluster Kit and TruSeq Rapid SBS Kit with HiSeq 2500
(Illumina Inc., USA). To quantify the total RNA of colon cancer organoids,
sequencing libraries were prepared using TruSeq RNA Sample Prepara-
tion Kit v2. After pooled libraries were denatured, each library was se-
quenced using the 100 bp paired-end mode of the TruSeq Rapid PE Clus-
ter Kit and TruSeq Rapid SBS Kit with HiSeq2500 (Illumina Inc.). The pre-
pared RNA-seq data were trimmed using Trimmomatic[51] version 0.39.
The trimmed reads were aligned to the mm10 reference genome using
STAR version 2.7.7a with the default parameter. The mapped reads were
indexed and sorted by samtools version 1.7. Then HTSeq[52] version.0.12.4
was used to quantify read coverage per gene. For all human RNA seq data,
the alignment pipeline (Trimmomatic – STAR – HTSeq) with hg38 refer-
ence genome was also performed. Next, batch-effect corrections were per-
formed by ComBat-seq.[53]

GSEA Analysis using the fgsea R Package: Gene Set Enrichment Anal-
ysis (GSEA) was performed to identify significantly enriched pathways in
our bulk RNA-seq data using the fgsea R package.[54] Differential gene
expression analysis was first conducted using DESeq2,[55] generating a
ranked list of genes based on log2 fold changes between experimental and
control groups. Using the fgsea package, the analysis with the following
parameters was performed: a minimum gene set size of 15, a maximum
gene set size of 500, and 1000 permutations to assess statistical signifi-
cance. The results were filtered to include only pathways with a nominal
p-value of less than 0.05. Significant pathways were further visualized to
interpret the results. Enrichment plots for key pathways were generated to
illustrate the distribution of genes within these pathways and their contri-
bution to the enrichment score.
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Supporting Information is available from the Wiley Online Library or from
the author.
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